最新消息:ERS-1 任务结束 .13 ATSR 特别报道 • ERS-1 和 -2 上的沿轨扫描辐射计仪器 . . . . .1 • 新的 ESA/ESRIN ATSR 近实时服务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 • GOME 和 ATSR-2 云数据检索对比 . ...
1 国家环境研究所卫星观测中心,16-2 Onokawa, Tsukuba 305-8506, Japan 2 Consiglio Nazionale delle Ricerche, Istituto Scienze dell'Atmosfera e del Clima, via Fosso del Cavaliere 100, 00133, Rome, Italy 3 中国气象科学院大气化学重点实验室,中国北京中关村南大街 46 号,邮编 100081 4 巴伦西亚大学地球科学系,Burjassot,巴伦西亚,西班牙 5 千叶大学环境遥感中心,千叶 263-8522,日本 6 首尔国立大学地球与环境科学学院,首尔 08826韩国第七部延世大学大气科学系,首尔 03722,韩国 8 中国科学院合肥物质科学研究院安徽光学精密机械研究所大气光学中心,安徽合肥 230031,中国 9 日本国家环境研究所环境测量与分析中心,茨城县筑波市小野川 16-2 305-8506,日本 10 印度地球科学部热带气象研究所,浦那 411 008,印度 11 印度地球科学部气象局环境监测与研究中心,Mausam Bhawan,Lodi Road,新德里 110 003,印度 12 泰国全球变暖学院,Napamitr 基金会,234/88 Asoke-Din Daeng Road,Bang Kapi 区,Huai Khwang 区,曼谷 10310,泰国 13 物理学蒙古科技大学理学院,216046,乌兰巴托,蒙古 14 富山大学理工学院(理学系),3190 Gofuku,富山 930-8555,日本 15 马里兰大学巴尔的摩分校(UMBC)地球系统技术联合中心(JCET),马里兰州巴尔的摩 21228,美国 16 达沃斯物理气象观测站,世界辐射中心,Dorfstrasse 33,7260 达沃斯,瑞士 17 东北大学理学院大气与海洋研究中心,仙台 980-8578,日本 18 气象研究所,气象局,长峰,筑波,茨城 305-0052,日本 19 空间应用和临近预报,气象局, Fitzroy Road,埃克塞特,EX1 3PB,英国 20 东京理科大学理学研究生院,东京 162-8601,日本 21 印度天体物理研究所,第二区 Koramangala,班加罗尔 560 034,印度 22 雷丁大学气象学系,雷丁,RG6 6BB,英国
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
摘要。在为未来的 L 波段被动微波土壤水分卫星任务做准备时,研究人员使用了地面、飞机和卫星传感器。在卫星传感器中,只有一种仪器在 L 波段提供任何遗产:20 世纪 70 年代运行的 Skylab S-194 仪器。在这里找到并恢复了来自 S-194 的数据集。这些 Skylab 任务的数据已在少数应用中进行了分析和报告,但是,这些研究使用了有限的验证,并且仅利用了收集到的部分数据。在本次调查中,我们探索了使用气候模型再分析项目的产品作为辅助或替代验证数据。分析表明,再分析输出不准确,价值有限。使用基于辐射传输的土壤水分检索算法进行的测试与可用于验证的观测结果相匹配。这些结果支持使用这种方法作为工具来了解更广泛的植被条件对土壤水分检索的影响。
通过光纤传输到光纤分路器,大约 1% 的功率从那里传输到监控探测器。剩余 99% 的功率传输到用于比较的参考光纤电缆。NIST 参考标准是电校准热释电辐射计 (ECPR),该辐射计先前已根据主要标准 NIST 激光优化低温辐射计 (LOCR) 进行了校准。ECPR 由覆盖有金黑色涂层的热探测器组成。在 1300 nm-1550 nm 的波长区域内,ECPR 的响应与入射辐射的波长无关 [12]。NIM 测量系统类似于 NIST 系统。它由波长为 1301.2 nm 和 1549.2 nm 的光纤尾纤激光源、参考光纤电缆以及用于比较 NIM 参考和传输标准的定位台组成。 NIM 参考标准,电校准绝对辐射计 (ECAR) 是一种已根据 NIM 低温辐射计校准的热设备。
摘要— 先进星载热辐射和反射辐射计 (ASTER) 是由日本东京国际贸易和工业部 (MITI) 提供的研究设施仪器,将于 1998 年发射到 NASA 的地球观测系统早晨 (EOS-AM1) 平台上。ASTER 在可见近红外 (VNIR) 中有三个光谱波段,在短波红外 (SWIR) 中有三个波段,在热红外 (TIR) 区域有五个波段,地面分辨率分别为 15 米、30 米和 90 米。VNIR 子系统有一个后视波段,用于沿轨道方向的立体观测。由于数据将具有广泛的光谱覆盖范围和相对较高的空间分辨率,我们将能够区分各种表面材料并减少由混合像素导致的一些低分辨率数据中的问题。 ASTER 将首次提供高空间分辨率的轨道多光谱热红外数据以及所有 EOS-AM1 仪器中空间分辨率最高的表面光谱反射温度和发射率数据。ASTER 任务的主要科学目标是提高对发生在地球表面和低层大气上或附近的局部和区域尺度过程的理解,包括地表-大气相互作用。科学调查的具体领域包括:1) 陆地表面气候学;2) 植被和生态系统动态;3) 火山监测;4) 灾害监测;5) 大气
2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4
图 16. 日照总辐射计的顶视图。......................................................................................22 图 17. 日照总辐射计的横截面图。..............................................................................22 图 18. 显示两个电缆连接器位置的侧视图.........................................................................................23 图 19. 显示干燥剂罐湿度指示窗位置的侧视图.........................................................................23 图 20. 干燥剂罐上湿度指示窗的特写。数字表示 30% 和 50% 相对湿度 (RH)。.............................................................................24 图 21. 安装在 TIS 塔顶的日照总辐射计。.............................................................................24 图 22. 生物温度传感器侧面概览照片.........................................................................................26 图 23. 标准生物温度传感器背面概览照片.............................................................................27 图 24. 土壤地块和 ML1 生物温度传感器背面概览照片。 ....................27 图 25. 生物温度传感器的正面视图.......................................................................28 图 26. 生物温度传感器的正面视图..............................................................................28 图 27. 生物温度传感器和辐射屏蔽尺寸................................................