摘要。为了了解南极洲气候的演变,需要在气候模型中准确捕捉控制地面和低层大气气象学的主导过程。我们使用了 10 公里水平分辨率的区域气候模型 MAR (v3.11),该模型由 ERA5 在 9 年期间 (2010-2018) 重新分析,以研究飘雪 (此处指 2 米以下和 2 米以上的风驱动雪粒运输) 对东南极洲阿德利地近地面大气和地表的影响。进行了两次模型运行,一次有飘雪,一次没有飘雪,并与阿德利地沿海多风地点 D17 的半小时现场观测进行了比较。我们表明,大气中飘雪颗粒的升华导致了模型运行之间的差异,并对近地面大气产生了重大影响。通过冷却低层大气并增加其相对湿度,飘雪还会减少地表的感热和潜热交换(平均 -5.7 W m-2)。此外,大而密集的飘雪层通过与入射辐射通量相互作用,增强入射长波辐射并减少夏季入射短波辐射(净辐射强迫:5.7 W m-2),充当近地面云。即使飘雪改变了这些涉及地表-大气相互作用的过程,由于地表能量通量的补偿效应,总地表能量收支仅因飘雪的引入而略有改变。飘雪驱动的影响是
气溶胶会影响从单个云到地球的量表的降水速率和空间模式。然而,关于在空间和时间尺度上多种效应的基本机制和重要性仍然存在很大的不确定性。在这里,我们回顾了这些效果背后的证据和科学共识,通过修改辐射通量和能量平衡来归类为辐射效应,以及通过修饰云滴和冰晶的修改,将其归类为辐射效应。存在广泛的共识和强有力的理论证据,表明气溶胶辐射效应(气溶胶 - 放射相互作用和气溶胶 - 云相互作用)充当降水变化的驱动因素,因为全球平均降水受到能量和表面蒸发的约束。同样,气溶胶辐射效应会导致大规模降水模式的据可查的偏移,例如间受反应收敛区。气溶胶对较小尺度下降水的影响的程度尚不清楚。尽管存在广泛的共识和有力的证据表明,气溶胶扰动微物理会增加云滴数量并减少液滴大小,从而减慢了降水液滴的形成,但总体气溶胶对跨尺度的降水的总体效应仍然高度不确定。全球云解析模型提供了调查目前在全球气候模型中尚未很好地代表的机制,并与较大的规模连接局部效果。这将增加我们对预测气候变化影响的信心。
摘要 虽然在没有自由液体的情况下,通过极度干旱的表面交换的蒸汽会影响沙海的水平衡,但由于缺乏具有精细空间分辨率的精确仪器,其机制记录不多。为了纠正这个问题,我们报告了流动沙丘表面下方的体积密度分布和蒸汽质量分数的时空变化,这些变化是用对吸附在沙粒上的微小水膜敏感的多传感器电容探头获得的。我们还记录了 2 天内的风速和风向、环境温度和相对湿度、净辐射通量和地下温度分布。数据验证了蒸汽质量分数的非线性模型。与通过谷物传导的热量不同,蒸汽通过平流和扩散渗透到间隙孔隙空间。在比蒸发更长的时间尺度上,吸附膜与周围环境保持平衡并阻碍分子扩散。它们与地下温度的非线性耦合导致蒸汽分布出现拐点,而在更简单的扩散系统中则没有对应现象。当风在地形上引起细微的压力变化时,就会出现孔隙平流。在风沙输送期间,流沙会间歇性地使地表脱水,引发瞬时蒸汽波,其振幅在特征长度上呈指数衰减,这意味着吸附率受动力学限制的活化过程控制。最后,探测器产生与大气边界层的扩散和平流交换。在白天,它们的总通量小于预期,但几乎与地表和高空的蒸汽质量分数之差成正比。在夜间更稳定的分层下,或在风沙输送期间,这种关系不再成立。
是一个公认的事实,即地面的状态是由下降的太阳能和IR助焊剂在很大程度上驱动的。模型为预测地面的状态而开发的模型急剧取决于这些通量的初始化。当无法使用测量的太阳能和红外通量时,必须计算它们。我们已经比较了使用不同太阳通量初始化方案进行的热模型计算的接地温度。这些初始化方案使用了在智能武器可操作性增强(SWOE)野外程序中测量的太阳通量值,并从半经验模型(Shapiro的模型),平面平行模型(Modtran)和ARL的AIM(大气照明模块)模型中计算出的太阳通量值。我们研究了表面温度对不同太阳通量初始化方案的响应,而所有其他环境参数均保持恒定。我们发现,对于晴朗的天空,所有方案都产生了几乎相同的表面温度。对于部分多云和多云的天空,只有AIM模型才能模仿测得的太阳通量观察到的空间变异性。云场景仿真模型(CSSM)用于确定云的空间变异性。然后使用AIM使用云分布来产生表面太阳负荷的变化。cssm还具有在短时间内在云场中产生时间变化的能力。因此,可以使用CSSM并旨在在太阳负载中产生时间和空间变化。诸如AIM之类的模型经常承担巨大的计算负担。为了减轻与目标相关的计算负担,我们已经实施了几个新的程序。用于预测地面状态的分布式能量预算模型需要分布式环境参数才能初始化。这些参数中的许多可以从中尺度模型中获得,例如MM5或与IMET等程序相关的数据库。,据我们所知,这些模型或程序都没有提供分布式的太阳能或红外通量,这是能源预算模型的关键初始化参数。诸如与CSSM相关的AIM,或为此而言,任何提供有关大气条件的空间和时间分布信息的模型,都可以用于提供辐射通量的空间和时间分布。
太空中的带电粒子辐射,包括范艾伦带中捕获的质子和电子以及太阳耀斑质子,是降低太阳能电池性能的最重要因素。目前,由于两项发展,太空光伏发电正在发生重大转变:i) 新任务采用电轨道提升,将等效辐射通量提高多达十倍。ii) 四结器件在太空发电中势头强劲,这些器件采用变质生长或晶圆键合等新生长技术制造。因此,有必要了解新四结以及当前使用的三结电池在这种新环境中的退化行为。为了实现这一目标,开始了一场退化运动。三结和四结电池以及它们各自的同型电池在粒子加速器中用能量为 1 和 3 MeV 的电子和能量为 1、2 和 5 MeV 的质子进行辐照。选择的能量和通量应能代表太空中的辐射环境。对电池进行表征,以确定其电特性和特征退化曲线。为了分析退化数据,采用了位移损伤剂量法:明确引入原子位移阈值能量 T d , eff 作为拟合参数。通过这一改变,非电离能量损失通过分析计算得出。这导致单条曲线上的电子数据崩溃,而这是获得特征退化曲线所必需的。与之前的分析方法不同,不需要引入没有物理意义的额外指数。改进的分析方法已成功应用于 4J 和 3J 电池以及它们各自的同型电池的退化数据。获得了短路电流、开路电压和最大功率点功率的特征退化曲线、退化参数和原子位移阈值能量。对于 3J 电池数据的崩溃,发现阈值能量为 21 eV 的 GaAs NIEL。对于 4J 电池数据的崩溃,发现阈值能量为 25 eV 的 In 0.3 Ga 0.7 As NIEL。计算了特定电轨道提升任务的粒子环境。使用计算出的粒子环境以及确定的 4J 退化特性,根据盖玻片厚度确定了电池的退化。发现最大功率点的功率下降到 87%