该研究的目标是开发一种架构并证明其适用于为智能代理创建 CAD 系统。智能代理是一种理性的软件代理,它包含大量其他软件代理,这些代理实现了生命支持系统所需的功能、专业化以及对代理的智能行为的控制。一组相互作用的软件代理——神经元形成一个神经认知架构,其中可以区分执行不同功能的认知节点,它们通过数据相互连接,形成智能决策过程的组织和功能结构的不变量。多智能体神经认知架构的不变量由相互连接的节点组成,用于识别输入图像、评估、设定目标、综合行动计划、建模实施计划的后果以及管理计划的实施。
无条件产生,该算法没有输入;该模型生成一个新的图像,该图像与培训数据共享特征。相比之下,随着统一的生成,该算法的输入是有效的类选择。例如,在MNIST数据集中,我们可以指示该模型生成数字的图像在0到9之间,从而从指定类中产生新的图像。在DDPM框架内,U-NET充当神经网络,以预测每个时间步处的噪声。对U-NET的输入是时间t的图像,时间嵌入和上下文嵌入。U-NET输出ϵ具有与输入图像相同的输入图像特征维度。this ϵ表示要从t处的库图像中减去的估计噪声,以在t-1处产生图像,从而使其更接近新图像。
卷积神经网络(CNN)是一种可以有效地从卫星图像中学习和提取空间特征的体系结构。它们由过滤器(也称为核)组成,这些过滤器(也称为内核)在输入图像上滑动,提取本地特征。这些过滤器学会检测模式,例如边缘,角落和纹理。随着我们更深入网络,这些过滤器变得更加复杂,学习复杂的层次结构特征。网络深度已被有目的地优化,以捕获低级和高级功能。分类过程是通过最初利用CNN的功能来区分的:(a)裁剪土地(b。)结构(c。)森林(d。)水。预计该地区的性质将在耕种期间保持恒定,因此在季节性进行面积检测。
双光子荧光显微镜 (2PM) 的最新进展使得活体小鼠的血管网络大规模成像和分析成为可能。然而,提取密集毛细血管床的网络图和矢量表示仍然是许多应用中的瓶颈。血管矢量化在算法上很困难,因为血管具有多种形状和大小,样本通常光照不均匀,并且需要较大的图像体积才能获得良好的统计能力。最先进的三维血管矢量化方法通常需要分割(二值)图像,依赖于手动或监督机器注释。因此,逐体素图像分割会受到人类注释者或训练者的偏见。此外,分割图像通常需要在骨架化或矢量化之前进行补救形态学过滤。为了解决这些限制,我们提出了一种矢量化方法,可从未分割图像中直接提取血管对象,而无需机器学习或训练。 MATLAB 中的无分割自动化血管矢量化 (SLAVV) 源代码已在 GitHub 上公开提供。这种新方法使用简单的血管解剖模型、高效的线性滤波和矢量提取算法来消除图像分割要求,用手动或自动矢量分类取而代之。半自动化 SLAVV 在小鼠皮层微血管网络(毛细血管、小动脉和小静脉)的三个体内 2PM 图像体积上进行了演示。矢量化性能已被证明对于血浆或内皮标记对比度的选择具有稳健性,并且处理成本与输入图像体积成比例。全自动 SLAVV 性能在不同质量的模拟 2PM 图像上进行评估,所有图像均基于大(1.4 × 0.9 × 0.6 mm 3 和 1.6 × 10 8 体素)输入图像。从自动矢量化图像计算出的感兴趣的血管统计数据(例如体积分数、表面积密度)比从强度阈值图像计算出的统计数据具有更高的图像质量稳定性。
随着大语言模型(LLM)和随后的聊天模型的最新进展,出现了新的大视力 - 语言模型(LVLM)的新浪潮。此类模型除文本外还可以输入输入,并执行诸如视觉问题的任务,图像字幕,故事产生等。在这里,我们根据输入图像中人们的特征来检查此类系统中潜在的性别和种族偏见。为此,我们提出了一个新的数据集对(日常场景的并行图像)。对数据集包含一组人的AI生成图像,因此图像在背景和视觉内容方面非常相似,但沿性别(男人,女人)和种族(黑色,白色)的维度有所不同。通过使用此类图像查询LVLM,我们根据所描绘的人的感知一代或种族观察到响应的显着差异。
下一步涉及神经网络模型开发。自动编码器和卷积神经网络(CNN)都是深度学习体系结构,但具有不同的目的,并且是为不同类型的任务而设计的。我们使用了自动编码器和CNN。设计了一个基于自动编码器的体系结构,包括编码器和解码器。编码器通过提取基本特征将输入图像压缩为紧凑的潜在表示,而解码器从压缩图像中重新构造了输入图像。CNN体系结构由多个卷积层组成,然后是合并,完全连接的层,有时是标准化层。cnn是一种监督的学习模型,专为涉及数据中的空间层次结构(例如图像)而设计。提取空间和分层特征(边缘,纹理等)用于分类,细分和对象检测等任务。
摘要:脑肿瘤是影响各个年龄段人群的全球公共卫生问题之一,早期发现肿瘤对个人生命极为重要。脑肿瘤症状复杂多样,检测起来颇具挑战性,因此需要改进成像技术才能可靠地诊断。本研究将深度卷积学习与机器学习技术相结合,通过基于 MRI 图像的分类深入研究早期脑肿瘤识别。本研究提出的模型使用结合随机森林和支持向量机的集成模型,可提供更好、更准确的早期脑肿瘤检测。这已得到证实,因为集成模型在早期脑肿瘤识别中实现了 97% 的召回率、96% 的 F 值、98.25% 的准确率和 98.89% 的精确度。此外,该模型能够正确检测输入图像中的脑肿瘤类型,也凸显了其对脑肿瘤进行分类和识别的能力。
在运营阶段部署视觉 AI 解决方案意味着视觉系统或视觉传感器接收输入图像或视频,并生成元数据,例如人数或汽车数量,或与特定对象相关的事件(例如产品识别)。在此阶段,PerCV.ai 通过两种方式确保隐私,首先是使用边缘 AI,其次是尽可能使用视觉传感器设计。边缘 AI 意味着所有视频和图像数据都在视觉传感器上实时本地处理,元数据在边缘设备提取,只有这些元数据可以传递到云或其他基础设施。在运营阶段,边缘 AI 不会存储任何图像或视频数据。这是 PerCV.ai 的强项,因为我们可以在各种边缘平台中部署视觉 AI 解决方案,从强大的 GPU 和 VPU 到微型 MCU 和 DSP。更多详细信息可在 Irida Labs 网站的合作伙伴部分找到。
摘要:对象检测是每个驱动程序自主系统(DAS)功能之一。但是,当前使用的对象检测结果限于检测大物体,而对于小于80 * 80像素的小物体,使用Yolo时检测准确性可能小于60%。基于上面的低对象检测准确性结果,本研究将尝试将Yolo输入图像中的网格数量从7*7、10*10、13*13、13、16*16和19*19中的Yolo输入中提高,以提高对象检测精度的大小。获得的图像数据分为两个部分:培训数据的70%,测试30%。根据测试的结果,对80 * 80像素的物体进行了7 * 7的网格,众所周知,检测结果的准确性达到90%。同时,网格的数量10 * 10、13 * 13、16 * 16和19 * 19仍在进一步测试中。
摘要在本文中,我们旨在使用深层神经网络从多云的光学图像和对齐的合成孔径雷达(SAR)图像中恢复无云的光学图像。与以前的方法相反,我们观察到卫星图像特征通常没有首选方向。通过使网络层遵守改变输入图像的方向的几何约束,可以将此见解纳入神经座的设计中,只能改变相应的输出图像的方向,而不必影响秘密的质量或细节。我们构建了一个多模式旋转 - 等级神经网络,称为EquICR(Equivariant Cloud Removal),该网络准确地编码了此几何。在接受公共SEN12MSCR数据集接受培训时,我们观察到使用EquiCR的重建图像质量的改善,与使用深度学习无内置旋转等效性相比。有趣的是,在更困难的情况下,当云覆盖量很高或训练数据集很小时,EquiCR对基线方法的改善更大。