虚拟现实 (VR) 已进入日常生活。虽然 VR 提供了越来越高的沉浸感,但控制和触觉仍然有限。当前的 VR 耳机配有专用控制器,用于控制每个虚拟界面元素。但是,控制器输入大多与虚拟界面不同。这降低了沉浸感。为了提供更逼真的输入,我们推出了 Flyables,这是一个使用四轴飞行器为虚拟用户界面元素提供匹配触觉的工具包。我们采用了五个常见的虚拟 UI 元素并构建了它们的物理对应物。我们将它们连接到四轴飞行器以提供按需触觉反馈。在一项用户研究中,我们将 Flyables 与基于控制器的 VR 输入进行了比较。虽然控制器在精度和任务完成时间方面仍然优于 Flyables,但我们发现 Flyables 提供了一种与 VR 环境交互的更自然、更有趣的方式。根据研究结果,我们概述了未来可以改善与 Flyables 交互的研究挑战。
回答以下问题: Q1. 什么是输入设备?说出任意两个。 回答:我们输入数据和指令的设备称为输入设备。例如键盘、鼠标。 Q2. 什么是打印机?说出打印机的类型。 回答:打印机是一种输出设备。它将输出打印到纸上。最常用的打印机是:
5.2 输入设备和控制器之间的通信必须加密。输入设备发送到锁硬件的数据至少应为 128 位 AES。5.3 对于生物特征锁,输入设备应仅读取和验证用户的生物特征数据,而不应就是否授予访问权限做出任何决定。传感器类型可以是光学/电容/刷卡等。数据将共享给锁硬件以做出进一步的决定。所使用的传感器应能够检测到呈现给系统用于身份验证的生物组织的活力,例如手指、虹膜、人脸等。读取器必须能够区分活指纹和死指纹(例如橡胶模具、照片、尸体的指纹等。5.4 生物特征读取器的传感器分辨率(所需最低精度)不得低于 500 dpi(参见 ISO 19794-2)。
诸如运动想象脑机接口 (BCI) 之类的输入设备通常不可靠。理论上,人机回路中可以使用通道编码来通过嘈杂的输入设备稳健地封装意图,但标准前馈纠错码实际上无法应用。我们为噪声水平非常高的二进制输入设备提供了一个实用且通用的概率用户界面。我们的方法允许实现任何级别的稳健性,而不管噪声水平如何,只要有可靠的反馈(例如视觉显示)即可。特别是,我们展示了基于反馈通道代码的高效缩放界面,用于噪声水平为基于运动想象的 BCI 等模态特征的二分类问题,准确率 < 75%。我们概述了基于分离通道、线路和源编码的人机回路设计中的一般原则。我们开发了一种新颖的选择机制,可以使用嘈杂的双态按钮实现任意可靠的选择。我们展示了对变化的通道统计数据的自动在线适应,以及无需精确校准错误率的操作。我们使用一系列可视化来构建用户界面,这些界面以对用户透明的方式隐式编码这些通道。我们通过一组蒙特卡罗模拟和人机交互实验的实证结果验证了我们的方法,结果表明,该方法在一系列通道条件下可有效运行,达到理论最佳值的 50-70%。
摘要:鼠标是现代所有计算机系统中不可或缺的输入设备。输入设备是我们每天使用的高接触表面,通常一整天都在使用。因此,鼠标上沾满了细菌。尽管无线鼠标让我们摆脱了对杂乱电缆的需求,但仍然需要触摸设备。鉴于疫情,本系统使用内置摄像头或外围网络摄像头捕捉手部动作和指尖检测,可以执行传统的鼠标功能,如左键单击、右键单击、滚动和光标功能。该算法基于机器学习。使用深度学习对算法进行训练,以便可以使用摄像头检测手部。因此,本系统将通过消除人为干预和对物理设备控制计算机系统的依赖来防止 Covid-19 的传播。