必须开发具有高容量电极和更环保、更经济、更稳定的系统的平面片上微电池,这对于为即将推出的微型片上系统智能设备供电至关重要。然而,由于制造工艺复杂、循环过程中微电极的稳定性以及在有限的设备体积内保持更高容量的挑战,高稳定性微电池领域的研究受到限制。为了满足这一需求,本研究专注于提供高度稳定和高容量的微电极。这涉及在电极材料和集电器之间添加 PEDOT 层,应用于平面聚苯胺阴极和锌阳极设备结构中以增强电荷存储性能。这种简单的策略不仅可以提高设备在长期循环中的稳定性并降低电荷转移阻力,还可以将 0.1 mA cm − 2 时的电荷存储容量从 17.64 μ Ah cm − 2 提高到 19.75 μ Ah cm − 2 。因此,锌离子微电池实现了显著的峰值面积能量和功率,分别为 18.82 μ Wh cm − 2 和 4.37 mW cm − 2。这项工作提出了一种有效的策略来提高平面微电池的电化学性能,这对先进便携式电子产品的发展至关重要。
决策变压器(DT)是一种创新的责任,利用了强化学习(RL)的跨前结构的最新进展。然而,DT的一个显着限制是其对回忆数据集的轨迹的依赖性,使能力无缝缝合亚壁轨迹。在这项工作中,我们引入了一个通用序列建模框架,用于通过层次RL的角度进行顺序决策进行研究。在做出决定时,高级政策首先提出了当前状态的理想提示,而低级政策随后在给定提示中生成了一项诉讼。我们表明,DT是该框架的特殊情况,并具有某些高级和低级政策的选择,并讨论了这些选择的潜在失败。受这些观察的启发,我们研究了如何共同优化高级和低级政策以实现缝合能力,这进一步导致了新的rl算法的发展。我们的经验结果清楚地表明,所构成的算法在数量控制和导航基准上显着超过了DT。我们希望我们的贡献能够激发RL领域内变压器体系结构的整合。
抽象的内在学习是离线加固学习(RL)来处理内线任务的一种有前途的方法,可以通过提供任务提示来实现。最近的著作表明,当将RL任务视为跨散点的顺序预测概率时,In-Actest RL可能会以反复试验的方式进行自我完善。尽管自我改善不需要梯度更新,但是当跨情节序列随着任务范围而增加时,当前的作品仍处于高计算成本。为此,我们提出了一个内在的决策变压器(IDT),以高级反复试验的方式实现自我完善。特定于IDT的灵感来自人类决策的有效层次结构,因此将序列重新构造为由高级决策组成,而不是与环境相互作用的低级动作。作为一个高级决策可以指导多步骤的低级动作,IDT自然会避免过度长序列并更有效地解决在线任务。实验结果表明,IDT超过了当前的内在RL方法,可以实现长胜压任务的最新任务。尤其是,我们的IDT的在线评估时间比D4RL基准中的基线快36倍,而在网格世界基准中,我们的IDT时间比基准的速度快27倍。
增材制造 (AM) 通常会导致钛合金强度高但延展性差。混合 AM 是一种能够同时提高延展性和强度的解决方案。在本研究中,通过将定向能量沉积与层间加工相结合,实现了 Ti-6Al-4V 的混合 AM。通过检查微观结构、残余应力和显微硬度,可以解释层间加工如何在保持与打印样品相同的强度的同时使延展性提高 63%。层间加工在打印中引入了反复中断,从而导致加工界面处针状 α 板条在缓慢冷却下变粗。选择性加工层上的粗 α 板条增加了拉伸载荷下的位错运动并提高了整体延展性。本出版物中强调的结果证明了混合 AM 提高钛合金韧性的可行性。关键词:混合增材制造、铣削、定向能量沉积、钛 1. 简介
1. 内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 2. 普渡大学机械工程学院,印第安纳州西拉斐特,美国 通讯作者 – MP Sealy,电子邮件 sealy@unl.edu 摘要 增材制造 (AM) 镁合金由于拉伸应力和粗大微观结构而迅速腐蚀。提出了将增材制造与层间超声波喷丸循环结合(混合)作为一种解决方案,通过强化机制和压缩残余应力来提高增材制造的镁 WE43 合金的耐腐蚀性。应用层间喷丸加工硬化离散层并形成区域晶粒细化和亚表面压缩残余应力屏障的全球完整性。通常会加速腐蚀的拉伸残余应力降低了 90%。结果表明,通过层间喷丸可以实现对腐蚀的时间分辨控制,并且与打印的 WE43 相比,打印单元内的局部腐蚀减少了 57%。关键词:增材制造、混合制造、镁 1. 引言 随着镁增材制造技术发展到更高的水平 [1],医疗器械和石油压裂行业寻求对负载-压力进行时间分辨的降解。
热处理 热处理技术可用于改变纯金属和合金的性质。典型应用包括硬化和应力消除退火。热处理涉及以精确定义的间隔加热材料,然后冷却。根据技术的不同,可以使用多种不同的介质(如水、油、盐、保护气体或空气)进行冷却。可以对铝合金、钛和铜等多种材料进行热处理以提高其强度。我们配备了大型计算机控制炉,可运行全自动热处理循环 - 这些过程也可以实时记录。