早在 20 世纪 70 年代 [1–12],电气过应力 (EOS) 就一直是电子设备、电路和系统中的一个问题,至今仍是一个问题 [13–83]。消费、工业、航空航天、军事和医疗等市场领域都受到这个问题的影响。设备制造商、供应商、组装和现场都经历过 EOS 故障。在电子行业,许多产品和应用因“EOS”故障而从现场退回。为了在解决 EOS 问题方面取得进展,提供一个评估和分析 EOS 现象的框架非常重要。作为该框架的一部分,应用词汇和定义非常重要。应用物理和数学定义来量化 EOS 条件是关键。建立故障分析和测试方法同样重要。了解 EOS 问题的起源和来源也至关重要。最后,为了提供更好的 EOS 稳健产品,定义设计实践和程序以及制造和生产领域的 EOS 控制程序非常重要。
当 Transil 暴露于正脉冲(即 TVS 反向偏置)时,单向 TVS 中的电压被钳位在 V CL ,而当暴露于负过应力(如二极管)时,它会产生电压降 V F 。单向 TVS 将负浪涌钳位在较低电压,并为周围的 IC 提供更好的过应力保护,但它不能在系统接线错误等情况下对电源端子上的反极性电压提供免疫力。具有对称 V/I 特性的双向 Transil 应该用于不包含针对反向连接的故障安全机制的应用,如带有背板电源的模块。但是,此类应用必须实施针对负瞬变的反极性保护。下图显示了一个完整的瞬态电压保护方案,其中附加电容器 C1 和 C2 提供与应用的保护接地端子 (PE) 以及共模 (CM) 噪声滤波器的定义耦合。
CSIR-NAL,国家三音速空气动力学设施 (NTAF) 部门,1.2m*1.2m 三音速风洞用于亚音速、跨音速和超音速马赫数测试(0.2-4.0)。柔性喷嘴 (FN) 是三音速风洞的重要组成部分。喷嘴由一对柔性钢板制成,设置为沿流道顶部和底部形成适当的轮廓。它由位于 17 个站点的液压执行器操作和控制。这些钢板上的过应力是由于曲率设置错误(过度弯曲)或液压千斤顶故障(例如执行缸卡住)或曲率传感器问题造成的。曲率传感器组件安装在柔性喷嘴边缘的不同位置,以识别过应力。由于风洞测试持续时间限制(约 30-40 秒)和串联传感器,通过选择开关扫描来识别特定站点的应力发生情况非常具有挑战性。为了解决这个问题,在 1.2 米 Trisonic 风洞中实施了柔性喷嘴的实时健康监测系统。在这里,限位开关输出并联连接到基于 NI 的硬件。如果板上出现应力,它将被记录并显示在实时软件中。关键词:- 柔性喷嘴、马赫数、风洞、Trisonic、亚音速、跨音速、超音速
由于光伏 (PV) - 电池 (BAT) 系统中发电和负载波动很大,因此电源管理策略变得不可或缺,因为需要 BAT 来维持发电/负载平衡并调节直流总线。事实上,能源管理策略必须考虑系统的极限,即标称 PV/BAT 功率额定值和 BAT 的充电状态 (SOC)。然而,实际使用可能与预期不同,迫使系统达到其极限。本文主要关注应用于示例独立直流微电网的极限控制和能量饱和管理。它包括根据电源的额定值准确地在电源之间分配可变功率负载,包括最小 SOC ' BAT 情况下的再生制动和最大 SOC ' BAT 情况下的电力负载需求的全面供应。此外,直流总线电压作为设计参数被调节到其预定义的水平。详细介绍了所提出的控制算法,并给出了过应力和标称条件下的系统设计。该算法的主要优点是其简单性。通过使用 Matlab/Simulink 和 DSpace 的仿真/实验系统验证和分析了能量饱和管理控制策略的有效性。结果表明,所提出的技术可以智能地管理能量流,从而确保系统在正常模式和饱和模式下正确安全地运行。
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。