摘要:移动物体检测和跟踪是安全应用之一,由于其在视频监控、交通监控和图像识别等领域的应用,引起了计算机视觉研究人员的极大兴趣。移动物体检测涉及在连续帧中识别物体,而物体跟踪用于监控相对于感兴趣区域的移动。在本研究中,使用 MATLAB 中的 Guide 创建了 GUI(图形用户界面),它提供软件应用程序的点击控制,无需学习语言或输入命令即可运行应用程序。在本文中,使用基于高斯混合模型的背景减法算法执行物体检测,该算法可以处理背景强度分布的较大变化,使用卡尔曼滤波器执行视频中的跟踪,该滤波器使用随时间观察到的一系列测量值,包含统计噪声和其他不准确性,并产生未知变量的估计值,这些估计值往往比仅基于单个测量值的估计值更精确,在物体周围绘制一个边界框以在物体在视频帧中移动时跟踪移动物体,每帧中物体的计数值显示在 MATLAB 命令窗口中。这里 MATLAB 与 Arduino 板(基于微控制器的板)连接,Arduino 板与 LED 连接,根据计数值 LED 的数量会发光。MATLAB 的计数值通过串行通信与 Arduino 板通信。关键词:移动物体检测、跟踪、引导、MATLAB、LED、Arduino、串行通信。
1.研究目的:为了提高复杂运动目标的跟踪和平滑能力,需要提高地面设备的指挥控制和信息相关功能的性能。特别是需要提高与指挥控制设备配合使用的雷达的性能。作为雷达目标跟踪算法,已经提出了M3(多机动模型)滤波器、IMM(交互多模型)滤波器等。该类滤波器对高机动目标有较高的跟踪性能,有望作为未来指挥控制雷达的滤波器。然而,有许多参数必须提前设置,例如运动模型的转移概率。在本研究中,我们设计了一种融入人工智能技术的过滤器,旨在提高处理三维运动物体的能力。
周期性是运动物体中经常发生的现象。寻找周期行为对于理解物体运动至关重要。然而,周期行为可能非常复杂,涉及多个交错的周期、部分时间跨度以及时空噪声和异常值。在本文中,我们解决了挖掘运动物体的周期行为的问题。它涉及两个子问题:如何检测复杂运动中的周期以及如何挖掘周期性运动行为。我们的主要假设是观察到的运动是由与某些参考位置相关的多个交错的周期行为产生的。基于此假设,我们提出了一个两阶段算法Periodica来解决这个问题。在第一阶段,提出参考点的概念来捕捉参考位置。通过参考点,可以使用结合傅里叶变换和自相关的方法来检索运动中的多个周期。在第二阶段,提出一个概率模型来表征周期行为。对于特定时期,通过层次聚类从部分运动序列中统计概括出周期性行为。对合成数据集和真实数据集的实证研究证明了我们方法的有效性。
在这个表达式中,A = dU/dt 是两个框架之间的相对加速度。最终的推论是,如果 A = 0,牛顿运动方程对于两个框架都是相同的(伽利略相对论)。但是,如果 (X, Y, Z) 是一个加速框架,就会出现一个虚拟的惯性力,它似乎会将物体“拉”向左(如果 A > 0)。这在我们日常生活中很常见,比如火车车厢、汽车、飞机等加速时,我们会感到被拉向后方。这种惯性力之所以得到“虚拟”的名称,是因为它们不是“真实”的力:它们不代表物理相互作用。然而,它们非常真实,因为非惯性框架中的物体可以感受到它们。惯性力的一个明显特征是它总是与运动物体的质量成正比。一种不是惯性的但恰好与质量成正比的力就是引力。这促使爱因斯坦研究引力是否实际上是某种惯性力。我们在他的广义相对论中证明了这一点。
相对论通过世界线将每个运动物体与一个固有时联系起来。然而在量子理论中,这种明确定义的轨迹是被禁止的。在介绍量子钟的一般特征之后,我们证明,在弱场、低速极限下,当运动状态为经典(即高斯)时,所有“良好”量子钟都会经历广义相对论所规定的时间膨胀。另一方面,对于非经典运动状态,我们发现量子干涉效应可能导致固有时与时钟测量的时间之间出现显著差异。这种差异的普遍性意味着它不仅仅是一个系统误差,而是对固有时本身的量子修改。我们还展示了时钟的离域性如何导致其测量时间的不确定性增大——这是时钟时间与其质心自由度之间不可避免的纠缠的结果。我们展示了如何通过在读取时钟时间的同时测量其运动状态来恢复这种丢失的精度。
时空扭曲是由于重力造成的。根据牛顿引力公式,如果任何物体的质量为零,那么引力就会为零。假设太阳和地球之间的情况,大约需要 8 分 20 秒,但如果太阳以某种方式消失,引力就会为零。我们都知道光比引力移动得快得多,因为引力是所有力中最弱的。那么引力怎么会比光快呢?花了 200 年才解决这个奇怪的情况。爱因斯坦的理论认为空间因行星的引力而弯曲。可以假设空间就像一张网,上面放着一些重物。这被称为时空扭曲。爱因斯坦从运动学(运动物体的研究)的角度提出了他的理论。他的理论是对洛伦兹 1904 年的电磁现象理论和庞加莱的电动力学理论的进步。虽然这些理论包括与爱因斯坦引入的方程(即洛伦兹变换)相同的方程,但它们本质上是为了解释各种实验(包括著名的迈克尔逊-莫雷干涉仪实验)的结果而提出的临时模型,这些实验极难融入现有范式。
一般特性。铝及其合金具有独特的性能组合,使铝成为用途最广泛、最经济、最具吸引力的金属材料之一,从柔软、高延展性的包装箔到要求最严格的工程应用。铝合金作为结构金属的使用量仅次于钢。铝的密度只有 2.7 g/cm 3 ,大约是钢(7.83 g/cm 3 )的三分之一。一立方英尺的钢重约 490 磅,而一立方英尺的铝只有约 170 磅。如此轻的重量,加上一些铝合金的高强度(超过结构钢),使我们能够设计和建造坚固、轻便的结构,这种结构对任何运动物体都特别有利,例如航天器和飞机以及所有类型的陆地和水运工具。铝能抵抗导致钢生锈的那种逐渐氧化。铝的暴露表面与氧气结合形成一层厚度仅为几千万分之一英寸的惰性氧化铝膜,阻止进一步氧化。而且,与铁锈不同,氧化铝膜不会剥落,露出新的表面,从而进一步氧化。如果铝的保护层被刮伤,它会立即重新密封。薄薄的氧化层本身紧紧贴在金属上,无色透明——肉眼看不见。铁和钢的变色和剥落