社会对太空资产的依赖已经增长到如今每个现代国家基础设施的一部分的程度。借助太空技术提供的服务(例如全球导航卫星系统)对于从电信到交通再到银行等各个领域的顺利运营至关重要(Hesse and Hornung,2015),而且这个清单还可以继续。甚至普通民众也已经习惯使用卫星服务,例如卫星电视或手机上的卫星导航。因此,对我们的太空资产的任何威胁对社会来说都是非常重要的问题。截至 2020 年 2 月,太空中大约有 5,500 颗卫星,但实际上只有大约 2,300 颗在运行,这意味着大约有 3,200 颗报废卫星仍在地球轨道上运行,还有火箭的上面级和整流罩以及因解体、爆炸、碰撞、退化或其他异常事件而产生的各种较小物体,这些事件导致碎片的产生。这些物体统称为空间垃圾,其尺寸分布范围从大型完整物体(例如,尺寸大于 10 米且重量为几吨的火箭或大型卫星的部件)到毫米大小的碎片,如油漆鳞片或冷却剂凝固液滴。2020 年初的估计显示,有 34,000 个物体大于 10 厘米,900,000 个物体介于 > 1 至 10 厘米之间,以及惊人的 1.28 亿个物体介于 > 1 毫米至 1 厘米之间。鉴于其高速度和随之而来的高动能,即使是小碎片也会对正在运行的卫星构成重大威胁,因为它们可能会撞击卫星,造成灾难性的后果并导致潜在的关键服务丧失。同时,较大物体之间的高能碰撞会产生真正的爆炸,从而产生数千个碎片。这些碎片反过来会与其他轨道物体相撞,引发连锁反应和滚雪球效应,可能导致整个轨道无法使用。这种极端情况(凯斯勒综合征)最初由凯斯勒在 70 年代研究(凯斯勒和库尔帕莱,1978 年),距离现实并不遥远,因为已经发生了几次碰撞。也许最著名的是俄罗斯军用通信卫星 Cosmos 2,251 与铱星星座卫星之间的碰撞(王,2010 年),这导致碎片数量大幅增加。随着目前正在开发的卫星应用越来越多,需要越来越多的卫星(例如,部署数百颗卫星组成的星座以提供全球连接或万维网),空间垃圾问题变得越来越重要(Virgili 等人,2016 年)。
本研究致力于应用利用场相位特性的地电控制补偿法来检测和定位地球动力学过程。与通常用于分析观测结果的电磁场异常分量的振幅参数相比,地电信号的相位配准法具有较高的抗噪性。开发了一种使用场相位特性来解释监测数据和相关地球动力学过程定位问题的形式化方法。在该方法的框架内,提出了通过加权均方解释误差和包含有关地电剖面先验信息的正则函数的最小和来确定剖面参数。为了检查球形溶洞的定位可能性,模拟了沿安装剖面移动球心时场电位的振幅和相位异常分量以及非均匀定位的标准误差。模拟表明,与不均匀位置具有良好的潜在区分度,在不均匀定位问题中,通过结合使用幅度和相位场分量可以获得最高的定位精度。
航空航天领域与汽车或自动化等其他信息物理系统领域非常相似,需要新的方法和途径来提高性能并降低成本,同时保持安全水平和可编程性。虽然异构多核架构看起来很有前景,但除了认证问题之外,还需要复杂的工具链和编程流程来充分发挥其潜力。ARGO(WCET-异构并行系统基于模型的应用程序的感知并行化)项目正在通过提供集成工具链来应对这一挑战,该工具链实现了一种创新的整体方法,用于在基于模型的工作流程中对异构多核系统进行编程。基于模型的设计提升了系统建模水平,并通过执行这些模型来验证和确认设计决策,从而促进了仿真。作为案例研究,ARGO 工具链和工作流程将应用于基于模型的增强型近地警告系统 (EGPWS) 开发。EGPWS 是当前飞机中随时可用的系统,它利用高分辨率地形数据库、全球定位系统和其他传感器为飞行路径上的障碍物和地形提供警报和警告。在对 ARGO 项目针对异构多核架构的基于模型的开发方法进行简单介绍后,将介绍 EGPWS 和 EGPWS 系统建模。
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。