航天飞机 — 该中心领导了航天飞机主发动机 (RS-25) 的设计,该发动机在 135 次任务中实现了超过 0.9996 的可靠性。经过 30 年的模块升级和设计改进,RS-25 继续融入技术进步和改进的制造技术,以提高经济性、可靠性和可操作性。这种持续改进的过程今天继续产生回报,因为马歇尔正在准备 RS-25 用于 SLS 核心阶段。RS-25 于 2015 年初在斯坦尼斯的 A-1 试验台上点火 500 秒,为 NASA 工程师提供了有关发动机控制器单元和进气压力条件的关键数据。这是自 2009 年航天飞机主发动机测试结束以来 RS-25 发动机的首次热点火。四台 RS-25 发动机将在未来的任务中为 SLS 提供动力。
压缩空气 - Parker Balston 氮气发生器需要清洁、干燥的压缩空气源才能实现最佳运行。压缩空气应尽可能接近仪器质量,并且供应的露点应小于或等于 60°F (15°C),压力应在 60 psig 和 125 psig (4.1 barg 和 8.6 barg) 之间。如果进气压力低于 60 psig (4.1 barg),则会发出警报,并且系统可能会进入改进的启动模式(有关更多详细信息,请参阅“压力中断”)。供应空气应为室温,并且相对不含水、压缩机油、碳氢化合物和颗粒物。如果压缩空气供应中含有过多来自压缩机的油和水,请在发生器上游安装预过滤器(请参阅推荐配件部分)。
压缩空气 - Parker Balston 氮气发生器需要清洁、干燥的压缩空气源才能实现最佳运行。压缩空气应尽可能接近仪器质量,并且供应的露点应小于或等于 60°F (15°C),压力应在 60 psig 和 125 psig (4.1 barg 和 8.6 barg) 之间。如果进气压力低于 60 psig (4.1 barg),则会发出警报,并且系统可能会进入改进的启动模式(有关更多详细信息,请参阅“压力中断”)。供应空气应为室温,并且相对不含水、压缩机油、碳氢化合物和颗粒物。如果压缩空气供应中含有过多来自压缩机的油和水,请在发生器上游安装预过滤器(请参阅推荐配件部分)。
航天飞机 — 该中心领导了航天飞机主发动机 (RS-25) 的设计,该发动机在 135 次任务中实现了超过 0.9996 的可靠性。经过 30 年的模块升级和设计改进,RS-25 不断融入技术进步和改进的制造技术,以提高经济性、可靠性和可操作性。这种持续改进的过程今天继续产生回报,因为马歇尔正在准备将 RS-25 用于 SLS 核心级。2015 年初,RS-25 在斯坦尼斯的 A-1 测试台上点火 500 秒,为 NASA 工程师提供了有关发动机控制器单元和进气压力条件的关键数据。这是自 2009 年航天飞机主发动机测试结束以来 RS-25 发动机的首次热点火。四台 RS-25 发动机将在未来的任务中为 SLS 提供动力。
收集了净扭矩和NOx排放量等性能数据。使用基于 APRBS 和 Chirp 信号的输入信号,我们获得了大约 68.9 小时的训练数据和大约 8.3 小时的模型验证数据。此外,为了验证目的,我们还获取了日本目前用于乘用车认证测试的WLTC全球统一测试循环下的30分钟模拟驾驶数据。请注意,用于获取验证数据的 APRBS 和 Chirp 信号不包含在用于获取训练数据的输入信号中。 VDE模型中数据采样周期为0.01秒,数值实验获取的数据点数如表2所示。 2.2 AI引擎模型构建及性能评估 本研究在构建重现VDE特征的AI引擎模型时,采用了神经网络这种机器学习算法,也是一种模仿人类神经系统的数学模型。 AI发动机模型被设想用作第3章中描述的燃烧控制器的状态预测模型。在这里,我们构建了一个模型来预测燃烧控制器控制的三个目标:燃烧重心位置、燃烧周期和净扭矩。表3给出了AI引擎模型的输入和输出参数列表。对于输入参数,事先使用XGBoost(eXtreme Gradient Boosting)9)构建预测模型,并利用SHAP(SHapley Additive exPla-nations)10)进行重要性分析,选取对预测目标影响力较大的参数。此外,对于输入参数,进气压力和进气氧浓度是使用过去四秒的时间序列数据来测量的,同时考虑到瞬态运行期间的响应延迟。 在建立模型时,神经网络中超参数的设置对准确率有很大的影响。因此,在本研究中,我们使用树结构 Parzen 估计器 (TPE)11) 来优化隐藏层的数量和神经元的数量。在 TPE 中,我们设置了最小化评估函数的超参数。