从 3D 显微镜图像重建数字神经元是研究大脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用追踪算法之前将神经元从噪声背景中分割出来。追踪结果对原始图像质量和分割精度很敏感。在本文中,我们提出了一种新的 3D 神经元重建框架。我们的关键思想是利用点云的几何表示能力来更好地探索神经元的内在结构信息。我们提出的框架采用一个图卷积网络来预测神经骨架点,采用另一个图卷积网络来产生这些点的连通性。我们最终通过解释预测的点坐标、半径和连接来生成目标 SWC 文件。在 BigNeuron 项目的 Janelia-Fly 数据集上进行评估,我们表明我们的框架实现了具有竞争力的神经元重建性能。我们对点云的几何和拓扑学习可以进一步有益于 3D 医学图像分析,例如心脏表面重建。我们的代码可在 https://github.com/RunkaiZhao/PointNeuron 上找到。
Patti Seller,执行董事,财富最有影响力的女性,只有一种方法可以到达梯子的顶部,但是有很多方法可以到达丛林体育馆的顶部。…一个丛林健身房为许多人提供景色,而不仅仅是那些处于顶部的人。在梯子上,大多数登山者都盯着上面的人的屁股。
基于能量的模型 (EBM) 因其在似然建模中的通用性和简单性而具有吸引力,但传统上很难训练。我们介绍了在连续神经网络上扩展基于 MCMC 的 EBM 训练的技术,并展示了它在 ImageNet32x32、ImageNet128x128、CIFAR-10 和机器人手轨迹的高维数据域上的成功,获得了比其他似然模型更好的样本,接近当代 GAN 方法的性能,同时覆盖了数据的所有模式。我们重点介绍了隐式生成的一些独特功能,例如组合性和损坏图像重建和修复。最后,我们表明 EBM 是适用于各种任务的有用模型,实现了最先进的分布外分类、对抗鲁棒分类、最先进的持续在线类学习和连贯的长期预测轨迹推出。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
这项研究得到了日本学术振兴会 (JSPS) KAKENHI(资助编号:18H03974、19KK0401、22K19238、23H00367、24K02010、22H04922(AdAMS))、日本科学技术振兴机构 COI-NEXT(JPMJPF2010)和日本医疗研究发展机构 (AMED)(24bm12230009)的支持。 名词解释(注1) CRISPR-Cas3:许多细菌都有一种名为CRISPR-Cas系统的防御系统,类似于适应性免疫。 CRISPR-Cas3属于1类CRISPR系统,2019年被报道为一种使用多蛋白复合物人工切割DNA的国产基因组编辑工具。 (注2)脱靶突变:在基因组编辑技术中,DNA序列中非预期的突变发生在特定目标序列以外的位置。最大限度地减少脱靶突变被认为对于基因组编辑技术的高度安全性至关重要。 (注3)长读测序:与传统方法相比,一次分析更长片段的DNA或RNA碱基序列的技术。在本研究中,我们使用了纳米孔测序方法,这是一种通过将序列穿过纳米级孔(纳米孔)实现高速解码的技术。
摘要 带隙工程是开发光电器件的关键方法,特别是对于近红外 (NIR) 应用,其中精确控制材料的电子和光学特性至关重要。本研究探讨了三种 III-V 半导体合金——砷化镓锑 (GaAsSb)、砷化镓锑氮化物 (GaAsSbN) 和砷化镓铝 (GaAlAs)——在定制带隙以满足 NIR 器件特定需求方面的潜力。GaAsSb 通过调整锑含量提供可调带隙,使其成为 NIR 光电探测器和激光二极管的多功能材料。GaAsSbN 中的氮进一步降低了带隙,增强了其对长波长应用的适用性,并提供与 GaAs 基板更好的晶格匹配。GaAlAs 以其稳定性和与 GaAs 的兼容性而闻名,可用于形成异质结和量子阱,从而实现高效的载流子限制和发射控制。通过改变这些合金的成分,工程师可以实现精确的带隙调节,从而优化一系列 NIR 波长范围内的器件性能。本摘要强调了成分变化、应变工程和量子阱设计在开发先进 NIR 光电器件中的重要性。尽管存在材料质量和热管理等挑战,但这些材料的持续改进对电信、医学成像和传感技术中的下一代 NIR 应用具有重要意义。简介 带隙工程是半导体技术中的一项基本技术,可以精确操纵材料的电子和光学
摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。
本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
自测试是一种仅基于其经典输入输出相关性来表征任意量子系统的方法,在独立于设备的量子信息处理以及量子复杂性理论中发挥着重要作用。先前关于自测试的研究需要假设系统的状态在仅执行本地测量且无法通信的多方之间共享。在这里,我们用单个计算受限方取代了多个非通信方的设置,这在实践中很难执行。具体来说,我们构建了一个协议,允许经典验证者稳健地证明单个计算受限的量子设备必须准备一个贝尔对并对其执行单量子位测量,直到对设备的状态和测量应用基础变化。这意味着在计算假设下,验证者能够证明单个量子设备内存在纠缠,这是一种通常与两个分离的子系统密切相关的属性。为了实现这一点,我们基于 Brakerski 等人首次引入的技术。 (2018)和 Mahadev (2018) 允许经典验证者约束量子设备的行为,假设该设备不会破坏后量子密码学。
Intello 的人工智能可以根据智能手机拍摄的照片生成即时质量指标。这可以实现农产品分级,即对食品图像进行自动质量分析,这是一种准确可靠的方法,可根据颜色、大小和形状对新鲜产品(水果、谷物、蔬菜、棉花等)进行分级。其工具有助于实现质量评估的透明度和标准化,从而降低农业供应链中的价值风险和浪费。它已经开发出一种适用于水果、蔬菜和香料的即用型解决方案。