美国联邦航空管理局 (FAA) 机场开发设计标准主要基于在 20 年规划期内使用或预计使用机场的飞机的大小和性能特征。此外,机场基础设施和功能的各种要素均基于这些标准。确定此规划标准(称为机场参考代码 (ARC))是总体规划的重要组成部分。ARC 由关键设计飞机进近类别 (AAC) 和飞机设计小组 (ADG) 确定。DGL 目前是机场参考代码 (ARC) B-II 设施。B-II 设施为进近速度在 91 到 120 节之间以及翼展在 49 到 78 英尺之间的飞机提供服务。B-II ARC 飞机的一些示例包括但不限于:赛斯纳 Citation V、比奇 King Air F90 等。道格拉斯目前设计的飞机是比奇 King Air 200。
美国联邦航空管理局 (FAA) 机场开发设计标准主要基于在 20 年规划期内使用或预计使用机场的飞机的大小和性能特征。此外,机场基础设施和功能的各种要素均基于这些标准。确定此规划标准(称为机场参考代码 (ARC))是总体规划的重要组成部分。ARC 由关键设计飞机进近类别 (AAC) 和飞机设计小组 (ADG) 确定。DGL 目前是机场参考代码 (ARC) B-II 设施。B-II 设施为进近速度在 91 到 120 节之间以及翼展在 49 到 78 英尺之间的飞机提供服务。B-II ARC 飞机的一些示例包括但不限于:赛斯纳 Citation V、比奇 King Air F90 等。道格拉斯目前设计的飞机是比奇 King Air 200。
摘要 - 飞机着陆对飞行员来说不是一件容易的事,因此需要一些计算机或自动驾驶仪的辅助,以及可靠高效的自动着陆控制器。这项任务甚至对控制器来说也不容易,因为有许多变量需要考虑,包括风、耀斑、高度、进近速度、航向、垂直速度以及飞机与跑道的对准等,这导致在这种情况下使用传统控制器的成本很高。因此,模糊逻辑可用于设计一个具有推理能力的系统,作为着陆助手的控制器,从而节省成本、高效使用材料并更好地管理时间。该项目中使用的模型飞机是在 MATLAB 中的 Aerosim 插件中给出的。因此,实现了自动着陆控制器助手的目标,使用此模拟,使用经典技术在 MATLAB 中的 Aerosim 插件模型中完成飞机的稳定。在这里,控制器中使用的模糊逻辑纠正了错误,使着陆变得顺利而轻松。
外环控制因素是影响飞行员在最后进近期间手动调节下滑道、迎角和队列的能力的因素。本报告集中讨论前两个因素,即下滑道和迎角。目标是确定确保有效外环控制的关键属性,然后检查现有设计要求如何很好地解决这些属性。飞行品质和性能要求的组合适用于此领域,包括 MIL-F-8785C、MIL-STD-1797A 和海军的进近速度标准。首先,报告回顾了该主题的历史背景,讨论了技术方法,并预览了要应用的分析工具。其次,它给出了外环控制的状态,包括对航母着陆任务的描述、现有飞机特性以及一些描述飞行中模拟航母进近的数据。接下来的描述包含任务、飞机和飞行员的数学模型组件。报告的主要部分介绍了一系列有助于确定关键外环控制特性的分析。最后一部分给出了实施结果的结论和建议。技术方法适用
35/36 型是 24 型的改进版本,是首架获得运输类别认证的 Learjet。它们采用了 30 系列机翼,该机翼在 WS 181 外侧延伸了 24 英寸,下垂的前缘和涡流发生器。机身也加长了 13 英寸,MAUW 也更高,但主要变化是增加了涡扇发动机。它们基本相同,只是 36 型是远程版本,机身油箱较大。–A 版本以序列号 35-067 和 36-018 推出,主要源于 Century III 机翼改进的推出。通过加厚的前缘和翼尖油箱处的直线边条,降低了进近速度。(AAK 76- 4 可追溯安装此修改。)进一步改进是安装在 AAK 79-10 下的 Softflite 配置,生产从序列号 35-279 和 36-046 开始。主要变化是涡流发生器被边界层增能器取代,在 WS 125 处增加了翼栅,并安装了前缘失速条。删除了翼尖油箱边条。
无人机具有提高操作灵活性和降低任务成本的良好能力,我们正在利用固定翼无人机实现的自动航母着陆性能改进。为了展示这种潜力,本文研究了两个关键指标,即基于 F/A-18 大攻角 (HARV) 模型的无人机飞行路径控制性能和降低进近速度。着陆控制架构由自动油门、稳定增强系统、下滑道和进近航迹控制器组成。使用蒙特卡洛模拟在一系列环境不确定性下测试控制模型的性能,包括由风切变、离散和连续阵风以及航母尾流组成的大气湍流。考虑了真实的甲板运动,其中使用了海军研究办公室 (ONR) 发布的海军环境系统表征 (SCONE) 计划下的标准甲板运动时间变化曲线。我们通过数字方式演示了允许成功着陆航母的限制进近条件以及影响其性能的因素。