我们考虑如何从两个时间和任意数量的量子比特的量子实验中分辨出与测量数据相关的时间顺序。我们定义了一个时间箭头推理问题。我们考虑在时间反转下对称或不对称的初始状态和最终状态的条件。我们通过伪密度矩阵时空状态表示时空测量数据。有一个完全正向和迹保持 (CPTP) 的正向过程和一个通过基于反转单元膨胀的替代恢复图获得的反向过程。对于不对称条件,协议确定数据是否与单元膨胀恢复图或 CPTP 图一致。对于对称条件,恢复图产生有效的 CPTP 图,实验可以在任一方向进行。我们还讨论了将该方法应用于 Leifer-Spekkens 或过程矩阵时空状态。
图 2-15 感知机 ............................................................................................................................. 18
计算机的高性能使得它们可以为药物设计中的实验室实验提供帮助。1因此计算机辅助药物设计在过去的几十年里得到了发展,充分利用高性能计算机,可以快速模拟药物设计中的诸多步骤,各种应用也逐渐发展起来。例如,NAMD (NAnoscale Molecular Dynamics)2、GROMACS3和Amber4提供了相对精确的分子动力学模拟手段,可以模拟分子体系在特定条件下的自然运动。分子对接可以探索不同分子之间的结合构象空间,帮助研究人员找到最佳的对接构象。许多专注于分子对接的方法包括DOCK、5AutoDock、6GOLD7等。随着深度学习在各个领域的卓越成就,基于深度学习的药物设计应用和模型不断涌现。Preuer等人。构建了一个前馈神经网络,并提出了一个名为 DeepSynergy 8 的模型来预测抗癌药物的协同作用。DeepTox 9 由一个深度神经网络组成,被提出用于毒性预测,并在 Tox21 挑战数据集中表现良好。10 BSite-pro 11 使用随机森林分类器仅基于序列来预测蛋白质结合位点。Lenselink 等人证明深度神经网络的表现优于生物活性基准集。12 Ciriano 等人总结了最近基于机器翻译的蛋白质化学计量建模
图 5 给出了所提 LSWD 算法和 SWD 算法在不同 迭代次数时的比特错误概率 (Bit Error Ratio, BER) 曲线,其中最大迭代次数分别取为 5 和 10 。 图 6 给出 了两种算法的译码性能与最大迭代次数的关系,其 中信噪比分别为 2.5 dB, 4.0 dB 。综合分析 图 5 和 图 6 的仿真结果,可以看出: (1) 所提算法和现有文献 的 SWD 算法的误码性能曲线都有明显的瀑布区。 (2) 当迭代次数相同时,所提算法的性能优于 SWD 算法。如,当译码迭代为 50 次、译码窗长度为 9 时,为达到 10 –6 BER ,所提算法所需的信噪比值 为 3.9 dB ,而目前常用的 SWD 算法则需要 4.2 dB , 所提算法约有 0.3 dB 的性能优势。 (3) 在译码性能 基本相同时,与 SWD 算法相比,所提算法可以明 显减少译码迭代次数。例如,当信噪比为 2.5 dB 时,为了获得 10 –3 的 BER ,所提算法和 SWD 算法所 需的迭代次数分别为 7 和 11 ;当信噪比为 4.0 dB 时,为了达到 10 –5 的 BER ,所提算法和 SWD 算法所 需的迭代次数分别为 12 和 20 ,此时所提算法的迭代
阿卜杜拉国王科技大学 (KAUST),计算生物科学研究中心 (CBRC),沙特阿拉伯图瓦尔 vladimir.bajic@kaust.edu.sa 摘要 识别药物和蛋白质的相互作用是药物发现早期阶段和寻找新药用途的重要步骤。传统的实验识别和验证这些相互作用仍然耗时、昂贵,并且成功率不高。为了改进这种识别过程,开发计算方法以最小错误率预测和排序可能的药物-靶标相互作用 (DTI) 将大有帮助。在这项工作中,我们提出了一种使用图嵌入和图挖掘进行药物-靶标相互作用预测的计算方法 DTiGEM。DTiGEM 模型将新型 DTI 识别为通过整合三个网络构建的异构图中的链接预测问题,即:药物-药物相似性、靶标-靶标相似性和已知 DTI。 DTiGEM 结合了不同的技术,包括图嵌入(例如 node2vec)、图挖掘(例如药物和目标之间的路径得分)和机器学习(例如不同的分类器)。与其他最先进的方法相比,DTiGEM 在四个基准数据集上对 DTI 进行计算预测时,在精确召回曲线下面积 (AUPR) 方面的预测性能有所提高。具体而言,我们证明,基于所有基准数据集的平均 AUPR 得分,DTiGEM 实现了最高平均 AUPR 值 (0.831),从而相对于比较中表现第二好的方法将预测误差降低了 22.4%。
单细胞分析软件提供了可立即追踪的克隆性证据图。DispenCell 的单细胞分配单元配有传感尖端,可检测细胞的通过。随着每个细胞的前进,会触发独特的电信号。这种独特的电迹会被立即记录下来,让用户在分配细胞后立即检查克隆性证据。全套数据存储在克隆性证据报告中。DispenCell 的技术已获得专利。
单细胞分析软件提供了可立即追踪的克隆性证据图。DispenCell 的单细胞分配装置配有传感尖端,可检测细胞的通过。随着每个细胞的前进,会触发独特的电信号。这种独特的电迹会被立即记录下来,让用户在分配细胞后立即检查克隆性证据。全套数据存储在克隆性证据报告中。DispenCell 的技术已获得专利。