说明: 1. 为提升股东权益报酬率,拟办理现金减资退还股款【附件八】。 2. 本公司额定资本额为新台币18,000,000,000 元,分为1,800,000,000 股,每股面额10 元。截至目前为止实际发行股数749,589,356 股,拟现金减资新台币2,623,562,750 元,销除已发行股份262,356,275 股,现金减资比率约为35% ,现金减资后实收资本额为新台币4,872,330,810 元,每股面额10 元,分为487,233,081 股。 3. 依已发行普通股总股数计算,预计每仟股换发650 股( 即每仟股减少350 股) ,预计每股退还现金新台币3.5 元。减资后不足一股之畸零股,股东得于减资换发
量子计算是解决化学问题的一种新兴范式。在之前的工作中,我们开发了量子退火特征求解器 (QAE),并将其应用于 D-Wave 量子退火器上分子振动光谱的计算。然而,原始的 QAE 方法仅适用于实对称矩阵。对于许多物理和化学问题,需要对复矩阵进行对角化。例如,量子散射共振的计算可以表述为复特征值问题,其中特征值的实部是共振能量,虚部与共振宽度成正比。在目前的研究中,我们将 QAE 推广到处理复矩阵:首先是复厄米矩阵,然后是复对称矩阵。然后使用这些推广来计算 O + O 碰撞的一维模型势中的量子散射共振态。这些计算是使用软件(经典)退火器和硬件退火器(D-Wave 2000Q)执行的。复杂 QAE 的结果也与标准线性代数库(LAPACK)进行了对比。这项工作提出了量子退火器上任何类型的复杂特征值问题的第一个数值解,也是任何量子设备上量子散射共振的第一次处理。
量子计量的目标是利用纠缠等量子特性精确估计参数。这种估计通常包括三个步骤:状态准备、时间演化(在此过程中参数信息被编码到状态中)和状态读出。时间演化过程中的退相干通常会降低量子计量的性能,被认为是实现纠缠增强传感的主要障碍之一。然而,我们表明,在适当的条件下,可以利用这种退相干来提高灵敏度。假设我们有两个轴,我们的目标是估计它们之间的相对角度。我们的结果表明,使用 Markvoian 集体退相干来估计两个方向之间的相对角度可实现海森堡极限灵敏度。此外,我们基于 Markvoian 集体退相干的协议对环境噪声具有鲁棒性:即使在独立退相干的影响下,也可以通过应用集体退相干来实现海森堡极限。我们提出的关于退相干的反直觉建议为量子计量学带来了新的应用。
间隔是代表与数据相关的不确定性的流行方式,在这种方式中,我们将每个观察结果视为间隔的宽度的模糊性。但是,在为此目的使用间隔时,我们需要使用适当的数学工具来使用。这可能是有问题的,这是由于与NuMerical的功能相比,间隔值函数的稀缺性和复杂性。在这项工作中,我们建议将Sugeno积分的概括扩展到与间隔值数据的工作。然后,我们在两个不同的设置中使用此积分对Aggregate间隔值数据进行:首先,我们研究了在脑部计算机界面中间隔的使用;其次,我们研究了如何在社交网络中构建间隔值的关系,以及如何汇总他们的信息。我们的结果表明,在两种情况下,间隔值数据可以有效地对数据的某些不确定性和联盟进行建模。对于大脑计算机界面的情况,我们发现我们的结果超过了其他间隔值函数的结果。
摘要:退相干是一种基本现象,当纠缠量子态与其环境相互作用时,会导致波函数坍缩。退相干的必然性提供了量子计算最内在的限制之一。然而,对导致退相干的环境化学运动的研究很少。在这里,我们使用量子分子动力学模拟来探索液态氩中 Na 2 + 的光解离,其中溶剂波动会引起退相干,从而决定化学键断裂的产物。我们使用机器学习将溶质-溶剂环境表征为高维特征空间,使我们能够预测键合电子何时以及在哪个光碎片上定位。我们发现,达到必要的光碎片分离并经历异相溶剂碰撞是化学键断裂过程中退相干的基础。我们的工作强调了机器学习在解释复杂溶液相化学过程方面的实用性,并确定了退相干的分子基础。
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特的位翻转错误将导致有害的
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特上的位翻转错误将导致对目标量子比特施加有害的非操作,从而导致两个错误的量子比特,而不是一个。因此
‡…‡›ǡ–š‡—‡”ƒ– ”‰›‰‡…›ȋȋȋȋȋȍ”‡Ž‡†‡†ƒ…'“ ƒ…Ї〜‡ - ‡''‡××™„›ͷͻͷǥ'•找积 - ‹'ǡ–š‡ƒ–ƒ×€€‰‰‰›'„„ƒŽ‡‡”‰›•‡'“”‡–ǧ–〜‡'‡×( '“ƒ… - ‹…ƒ秀›››''••€€‡™×' - Š' - - - - - - - '×…€‡ - ‡ - ˆ”'ˆ…………€…' - ” - €€ ‡ˆ‡■ “‰›'〜‡” - ›×ˆ”×…ƒƒ† - Ї‡‡‡‡‡‡‡™‡™■„™♦‡‡———“‰›ȋȋȋ” –š•ǡ–š‡‰‡‡“ ƒ–”'' 'ǥŠ×• - - - †› ‹•'〜‡Žƒ•€€â''''''•‡•ƒ•„ǧǧšƒ找一项! ‡ - - ” ‹…›‰‡‡” ƒ–钓务…ƒ'…×…找置ˆ ———“‡‡Ž‡” - ”×…找ͷͷƒ†ͷͺͷƒ•–š‡–ƒ“‰‡†›‡ƒ”•'ˆ ‹'އ♦‡‡‡—TAIJ‰›•›•›•找ƒ–â'ˆ‡Ž‡ - “”…› ———‡‡…‡ - “‰”找积‹–›ƒ……••'ˆƒŽ -š‡•……' - ” - â€来的ƒ–‡‰ach…ƥƒ…׎€才应†› ‹•͉ϳ;„找一项•›• - •‡•އ‡ - ■€„›ͷͷƒ†ͷͺͷƒ”‡•–š‡•'• - ˆ‡ƒ•找‡‡‰” ƒ–€âˆ –š‡‡‡‡‡‰ - ‹‰ȁȁ †™×Ž都„‡•……‡‡••• - ȁ‡ƒ•找积‡…' ' ‹… …'•–•Ǥ Ћއ –Š‹• †'‡• '– ”‡“—‹”‡ –Ї ‹ –‡‰”ƒ–‹' 'ˆ •–'”ƒ‰‡ •›•–‡ •ǡ ‹– ™‹ŽŽ ЇŽ' –Ї …'— –”‹‡• ”‡†—…‡ –Ї‹” ‡Ž‡…–”‹…‹–› •‡…–'” ƒ”„' ‡ ‹••‹' „› ͻͼǤͼά ƒ † ͼͷǤ;ά „› ͶͶ ƒ † ͶͺͶ ”‡•'‡…–‹˜‡Ž›Ǥ
可以得到为 |𝜓 # ⟩ 89:; = b|𝐻⟩ 8 " |𝐿⟩ 9 " F|𝑉⟩ : " |𝑅⟩ ; " + |𝑅⟩ : # |𝑉⟩ ; # G −|𝑉⟩ 8 " |𝐿⟩ 9 " F|𝐻⟩ : " |𝑅⟩ ; " + |𝑅⟩ : # |𝐻⟩ ; # Gc/2 。否则,如果
a 意大利比萨皮萨格里德.5395.a 大学医学和外科转化研究和新技术系病毒学科逆转录病毒中心 b 英国剑桥大学网格.5335.0 兽医学系病毒性人畜共患疾病实验室 c 意大利瓦雷泽伊苏布里亚大学医学和外科系 d 意大利比萨比萨大学医院病毒学科 e 意大利罗马国立卫生研究所 f 意大利比萨皮萨格里德.5395.a 大学临床和实验医学系药理学科 g 意大利比萨皮萨格里德.5395.a 大学临床和实验医学系血液学科 h 意大利罗马罗马第一大学网格.7841.a 分子医学系病毒学实验室 i 罗马第一大学分子医学系巴斯德研究所-Cenci Bolognetti 基金会Romegrid.7841.a,罗马,意大利