更具体地说,我们解决了 QA 的局限性,QA 并非为解决许多经济模型核心的动态规划问题而设计的。具体来说,QA 本身不允许随时间推移或跨多个目标函数进行迭代,并且受到量子到经典瓶颈的影响,这严重限制了可以读出多少经典信息作为问题的解决方案。我们的方法克服了这些限制,可用于恢复宏观经济学、产业组织、博弈论和劳动经济学问题的政策和价值函数。为了评估我们的方法,我们在 QA 上求解实际商业周期 (RBC) 模型,并将其性能与 Aruoba 和 Fern´andez-Villaverde ( 2015 )(以下简称 AFV )中的基准结果进行比较。求解 RBC 模型还使我们能够展示如何以可以在 QA 上求解的方式制定一个众所周知的经济模型。即使受到现有量子技术的限制,我们仍然可以在 AFV 中使用 C++ 以 VFI 解决方案计算时间的 3% 或组合计算时间的 0.66% 来解决 QA 上的 RBC 模型
摘要:椎间盘 (IVD) 退化可引起慢性下腰痛 (LBP),从而导致残疾。尽管在治疗椎间盘源性 LBP 方面取得了重大进展,但当前治疗的局限性引发了人们对生物方法的兴趣,包括生长因子和干细胞注射,作为因 IVD 退化 (IVDD) 导致慢性 LBP 患者的新治疗选择。基因疗法为 IVDD 治疗带来了令人兴奋的新可能性,但治疗仍处于起步阶段。使用 PubMed 和 Google Scholar 进行文献检索,以概述 IVDD 基因治疗的原理和现状。回顾了体外和动物模型中基因向退化椎间盘细胞的转移。此外,本综述描述了 RNA 干扰 (RNAi) 基因沉默和成簇规律间隔短回文重复序列 (CRISPR) 系统基因编辑以及哺乳动物雷帕霉素靶 (mTOR) 信号在体外和动物模型中的应用。近年来重大的技术进步为新一代椎间盘内基因治疗慢性椎间盘源性腰痛打开了大门。
考虑到这些影响及其对我们理解被测物体的影响,本指南旨在概述一种可以开始补偿这些影响的方法。最近的研究关注的是所谓的混合计量方法。一般而言,这里提供的方法是持续监测测量体积周围的温度。在计算机模拟中使用这些测量温度,可以预测物体在这些负载下可能受到的点位移影响。然后可以将得到的模拟位移添加到测量坐标中,以产生更接近理想计量环境中测量结果的测量结果(如果有这样的环境)。
考虑到这些影响及其对我们理解被测物体的影响,本指南旨在概述一种可以开始补偿这些影响的方法。最近的研究关注的是所谓的混合计量方法。一般而言,这里提供的方法是持续监测测量体积周围的温度。在计算机模拟中使用这些测量温度,可以预测物体在这些负载下可能受到的点位移影响。然后可以将得到的模拟位移添加到测量坐标中,以产生更接近理想计量环境中测量结果的测量结果(如果有这样的环境)。
•在第2章中,我们研究了TCFD建议中如何考虑治理,激励措施和能力,以及这些领域的期望如何随着国际可持续性标准委员会(ISSB),TPT和GFANZ的工作而发展。•在第3章中,我们考虑了更深入的公司的可持续性与目标和策略,以及如何通过其治理和激励安排来支持这些目标。我们还思考资产经理和资产所有者如何组织和管理其管理活动以影响积极变革。我们的观察和讨论问题是由委托文章,相关文献的审查以及我们自己的分析所激发的 - 包括对公司公共可持续性与之相关的披露的审查,例如其TCFD披露的披露。•第4章考虑公司的培训和能力,第5章总结了下一步。
量子力学超越了自由粒子和封闭系统,还涵盖了具有许多子系统的复合系统。与经典物理学不同,由于不可克隆定理,量子信息无法复制。因此,如果想要获取有关某个封闭量子系统的信息,就必须与该系统交互,而这将不可避免地对系统产生一些影响。测量行为会扰乱系统。在日常的经典物理学中,人们也会遇到这种影响。例如,从股票市场获取信息并根据信息采取行动,将会引起干扰,因为其他交易者会对此行为做出反应。社会心理学中的观察者效应也表明了这种现象,即实验参与者知道他们被观察,因此会表现出不同的行为。然而,在量子力学中,测量会从根本上扰乱系统。
量子信息领域发展迅速,因为它有望解决各种传统计算机无法解决的计算问题。然而,构建一台功能齐全的量子计算机是一项艰巨的任务,因为它的性能受到不可避免的退相干的影响。退相干消除了物质的量子性质,从而消除了量子计算相对于传统计算的优势。然而,对于特定的应用,一些精心设计的退相干有助于幺正量子演化,可能会大有裨益。在本文中,我讨论了两个这样的例子:量子随机游动 (QSW) 和混合量子经典退火 (HQCA)。QSW 将幺正量子游动的概念推广到额外的非幺正演化。这产生了定向游动。QSW 可以是连续时间的,也可以是离散时间的。在这项工作的第一部分,我提出了两种算法,用于在相干量子计算机上模拟特定的 QSW。第一种适用于连续时间 QSW,第二种适用于离散时间 QSW。在这项工作的第二部分,我提出了一种称为混合量子经典退火的方法来提高绝热量子计算 (AQC) 的性能,该方法应该找到某个目标汉密尔顿量的基态。HQCA 应该通过将量子比特系统耦合到工程热浴来增加最终基态概率。对单个量子比特和两个量子比特的 HQCA 性能进行了数值测试。
摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。