在思考不同的情况时,请考虑如何在紧急情况下预防和应对潜在的动物逃逸,因为这可能成为它们自己的紧急情况。饲养危险动物的设施应联系当地公共安全和应急管理官员,讨论和记录有关动物飞镖、使用二级屏障、人类和动物安全协议以及捕捉逃逸动物的计划。
尽管免疫疗法对晚期非小细胞肺癌 (NSCLC) 具有相关的抗肿瘤疗效,但对于癌症携带激活表皮生长因子受体 (EGFR) 突变的患者的结果却令人失望。EGFR 突变型 NSCLC 患者的免疫逃逸以及对免疫疗法无反应和耐药性的生物学机制已被部分研究。在这方面,肺癌免疫逃逸主要涉及肿瘤环境中具有广泛免疫抑制作用的大量腺苷。事实上,除了免疫检查点受体及其配体之外,诱导免疫抑制的其他机制,包括由外核苷酸酶 CD39 和 CD73 产生的腺苷也会导致肺肿瘤发生和进展。在这里,我们回顾了免疫检查点抑制剂在 EGFR 突变型 NSCLC 中的临床结果,重点关注 EGFR 突变型肿瘤微环境的动态免疫组成。腺苷通路介导的肿瘤微环境中能量代谢失调被认为是免疫逃逸过程的潜在机制。最后,我们报告了制定免疫检查点阻断和腺苷信号抑制联合治疗策略以克服 EGFR 突变 NSCLC 的免疫逃逸和免疫治疗耐药性的有力理由。
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
癌细胞可塑性是三阴性乳腺癌 (TNBC) 化疗和靶向治疗失败的重要原因。治疗诱导的肿瘤细胞可塑性和相关耐药性的分子机制在很大程度上是未知的。使用全基因组 CRISPR-Cas9 筛选,我们研究了用 γ 分泌酶抑制剂 (GSI) 治疗的 NOTCH 驱动的 TNBC 的逃逸机制,并确定 SOX2 是 Notch 抑制耐药性的靶点。我们描述了 Notch 信号和 SOX2 之间的一种新型相互抑制反馈机制。具体而言,Notch 信号通过其 HEY 家族的靶基因抑制 SOX2 表达,而 SOX2 通过与 RBPJ 直接相互作用抑制 Notch 信号。这种机制形成了不同的细胞状态,其中 NOTCH 阳性 TNBC 更像上皮细胞,而 SOX2 表达与上皮-间质转化相关,诱导癌症干细胞特征和 GSI 耐药性。为了抵消单药治疗引起的肿瘤复发,我们分别评估了 GSI-紫杉醇和达沙替尼-紫杉醇联合治疗对 NOTCH 抑制剂敏感和耐药的 TNBC 异种移植的效果。这些独特的预防组合和二线治疗方案依赖于 TNBC 中的 NOTCH1 和 SOX2 表达,能够诱导肿瘤生长控制并减少转移负担。
在 COVID-19 大流行期间,SARS-CoV-2 变体引发了大规模感染,其推动力是传染性增强和免疫逃逸。当前的模型侧重于变体频率的变化,而没有将其与内在传染性和免疫逃逸的潜在传播机制联系起来。我们引入了一个将变体动态与这些机制联系起来的框架,展示了宿主群体免疫如何与病毒传染性和免疫逃逸相互作用以确定相对变体适应度。我们提出了一种选择性压力指标,仅使用基因数据即可提供流行病增长的早期信号,这对于当前病例漏报至关重要。此外,我们表明潜在免疫空间模型可以近似免疫距离,从而为群体易感性和免疫逃逸提供见解。这些见解完善了实时预测,并为研究病毒遗传学、免疫力和流行病增长之间的相互作用奠定了基础。
带有检查点抑制剂的抽象背景免疫疗法,尤其是那些针对编程的死亡受体1(PD-1)/PD-1配体(PD-L1)的免疫疗法,越来越多地被认为是恶性肿瘤的高度有希望的治疗方式。然而,限制了免疫检查点阻滞治疗在治疗胶质母细胞瘤(GBM)中的效率。因此,必须扩大我们对GBM免疫逃逸(IE)背后的分子机制的理解。进行蛋白质芯片分析以在PD-1抑制剂敏感或抗性GBM中异常表达的OMA1蛋白筛选。在此,采用了公共数据库和生物信息学分析来研究OMA1和PD-L1关系。然后,通过不同的实验方法在初级GBM细胞系中验证了这种预测的关系。在免疫抑制中研究OMA1背后的分子机制,采用了一系列实验方法,包括蛋白质印迹,共免疫沉淀(CO-IP),质谱法(MS),免疫荧光,免疫荧光,免疫组织,免疫组织化学和QRT-PCR。结果我们的发现表明,OMA1竞争性结合HSPA9以诱导线粒体并介导GBM的IE。来自TCGA的数据表明OMA1与免疫抑制之间存在显着相关性。OMA1促进了GBM患者的原代细胞中的PD-L1水平。接下来,在GBM原代细胞上进行的Co-IP和MS的结果表明OMA1与HSPA9相互作用并诱导线粒体。OMA1不仅通过增加线粒体DNA释放,还通过激活CGAS插入来促进CGAS插入活性。最终,已经发现OMA1通过调节PD-1结合和PD-L1介导的T细胞毒性来诱导GBM中的免疫逃避。结论OMA1/HSPA9/CGAS/PD-L1轴在我们的研究中被阐明为GBM中新鉴定的免疫治疗靶标。
摘要:利用广义自由能和Kramers逃逸率,在量子Bañados-Teitelboim-Zanelli(qBTZ)黑洞中观测到一种新奇的热力学现象,该现象也揭示了量子黑洞的独特性质。在通过扩展麦克斯韦构造得到的广义自由能的影响下,黑洞系统内部各热力学态的随机热运动诱发相变。通过对Kramers逃逸率的分析发现,qBTZ黑洞热力学系统表现出反弹效应,这源于黑洞热力学系统中熵的非单调性。此外,在不同量子反作用下得到了qBTZ黑洞的整体热力学图像。
摘要 – 温室的微气候被视为一个相对均匀的实体,人们对此有充分的了解,并且有作物生长模型和环境参数,可以推导出专家决策支持系统,并设计影响生产力的自动环境控制。然而,人们对叶面边界层病原体的微生物微气候了解甚少,疾病逃逸措施尚未纳入自动环境控制系统。由于生物防治微生物必然与微生物病原体栖息在相同的生态位中,因此描述叶面环境以促进生物防治而不增强致病性是一项非常困难的工程挑战。本综述探讨了设计环境以最大限度提高生产力、促进疾病逃逸和允许生物防治的难题。
癌症治疗的效果在很大程度上受到肿瘤微环境 (TME) 中的免疫抑制机制的限制。已发现多种免疫逃逸机制。这些机制不仅包括与肿瘤、免疫或基质细胞相关的过程,还包括 TME 内的体液、代谢、遗传和表观遗传因素。免疫逃逸机制的发现使得小分子、纳米药物、免疫检查点抑制剂、过继细胞和表观遗传疗法的开发成为可能,这些疗法可以重新编程 TME 并改变宿主的免疫反应以促进抗肿瘤作用。这些方法已转化为一系列癌症治疗的突破,其中一些已在临床实践中实施。在本文中,作者概述了 TME 内一些最重要的免疫抑制机制及其对针对不同癌症的靶向治疗的影响。
摘要 免疫疗法,尤其是免疫检查点抑制剂 (ICI),彻底改变了许多类型癌症的治疗方法,尤其是晚期癌症。尽管如此,尽管一部分患者在接受 ICI 治疗后经历了显著且长期的疾病消退,但大多数患者并没有从这些治疗中受益。有些甚至可能会出现癌症进展。肿瘤细胞的免疫逃逸可能是这种低反应率的一个关键原因。N 6 -甲基腺苷 (m 6 A) 是最常见的 RNA 甲基化类型,已被公认为肿瘤和免疫系统的关键调节剂。因此,m 6 A 修饰和相关调节剂是提高肿瘤免疫治疗疗效的有希望的靶点。然而,m 6 A 修饰与肿瘤免疫逃逸 (TIE) 之间的关联尚未得到全面总结。因此,本综述总结了有关 TIE 中涉及的 m 6 A 修饰及其潜在作用机制的现有知识。此外,我们概述了目前可用的针对 m 6 A 调节剂的药物,这些药物已测试其对 TIE 的增强作用。本综述确立了 m 6 A 修饰与 TIE 之间的关联,并针对与 TIE 有关的 m 6 A 修饰,为最大限度提高免疫疗法的疗效提供了新的见解和策略。关键词:N 6 -甲基腺苷 (m 6 A)、癌症、肿瘤、免疫疗法、肿瘤免疫逃逸 (TIE)