十年后,当时就职于贝尔实验室的美国数学家彼得·肖尔 (Peter Shor) 设计出了最早的量子算法之一。对于传统(非量子)计算机来说,将两个数字相乘很容易,但执行逆运算(将数字分解为因数)却非常困难。事实上,随着数字越来越大,这个问题很快就会变得难以解决。这个问题非常困难,以至于现代数据加密利用了这种难解性来保护我们的信息。不幸的是,肖尔利用量子力学的特性发现了一种量子算法,可以大大加快这个逆问题的求解速度。一旦我们制造出足够强大的量子计算机来运行它,这一发现就会使当今的数据安全面临风险。
量子算法在各种应用中都比经典算法有显著的加速。本文使用块编码方法开发了广泛应用于经典控制工程的卡尔曼滤波器的量子算法。整个计算过程是通过在块编码框架上对汉密尔顿量进行矩阵运算来实现的,包括加法、乘法和逆运算,与以前解决控制问题的量子算法相比,这些运算可以在统一的框架中完成。我们证明,与传统方法相比,量子算法可以指数级加速卡尔曼滤波器的计算。时间复杂度可以从 O ( n 3 ) 降低到 O ( κpoly log( n/ϵ ) log(1 /ϵ ′ )) ,其中 n 表示矩阵维数,κ 表示要求逆矩阵的条件数,ϵ 表示块编码所需的精度,ϵ ′ 表示矩阵求逆所需的精度。本文为实现卡尔曼滤波器提供了全面的量子解决方案,并试图拓宽量子计算应用的范围。最后,我们给出了一个在 Qiskit(一个基于 Python 的开源工具包)中实现的说明性示例作为概念验证。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
技术进步开始将一个以前只是学术性的问题变为现实:计算的基本物理极限是什么?兰道尔的结论 (1) 是,唯一必然需要耗散的逻辑运算是不可逆运算,这一结论促成了可逆、无耗散逻辑器件的设计 (2),促成了仅使用可逆逻辑即可进行计算的发现 (3-4),并促成了计算机的提案,在计算机中,比特(信息的基本量子)由真正的量子力学量子(如自旋)记录 (5-10)。到目前为止,量子力学计算机的提案依赖于“设计汉密尔顿算子”,这些算子是专门为允许计算而构建的,不一定与任何物理系统相对应。相比之下,本报告提出了一类实际上可能可构建的量子计算机。拟议的计算机由弱耦合量子系统阵列组成。计算是通过将阵列置于电磁脉冲序列中来实现的,这些脉冲序列会在局部定义的量子态之间引起跃迁。例如,在一维空间中,计算机可能由聚合物中的局部电子态组成;在二维空间中,计算机可能由半导体中的量子点组成;在三维空间中,计算机可能由晶格中的核自旋组成。在兰道尔极限下运行,只需要耗散即可进行纠错,这里详述的系统是 Deutsch 设想的真正的量子计算机 (6):位可以放置在 0 和 1 的叠加中,量子不确定性可用于生成随机数,并且可以创建表现出纯量子力学相关性的状态 (5-10)。利用量子效应构建分子级计算机的想法并不新鲜 (11-13)。这里详述的提议依赖于共振的选择性驱动,这是 Haddon 和 Stillinger (11) 用来在分子中诱导逻辑的方法,