技术进步开始将一个以前只是学术性的问题变为现实:计算的基本物理极限是什么?兰道尔的结论 (1) 是,唯一必然需要耗散的逻辑运算是不可逆运算,这一结论促成了可逆、无耗散逻辑器件的设计 (2),促成了仅使用可逆逻辑即可进行计算的发现 (3-4),并促成了计算机的提案,在计算机中,比特(信息的基本量子)由真正的量子力学量子(如自旋)记录 (5-10)。到目前为止,量子力学计算机的提案依赖于“设计汉密尔顿算子”,这些算子是专门为允许计算而构建的,不一定与任何物理系统相对应。相比之下,本报告提出了一类实际上可能可构建的量子计算机。拟议的计算机由弱耦合量子系统阵列组成。计算是通过将阵列置于电磁脉冲序列中来实现的,这些脉冲序列会在局部定义的量子态之间引起跃迁。例如,在一维空间中,计算机可能由聚合物中的局部电子态组成;在二维空间中,计算机可能由半导体中的量子点组成;在三维空间中,计算机可能由晶格中的核自旋组成。在兰道尔极限下运行,只需要耗散即可进行纠错,这里详述的系统是 Deutsch 设想的真正的量子计算机 (6):位可以放置在 0 和 1 的叠加中,量子不确定性可用于生成随机数,并且可以创建表现出纯量子力学相关性的状态 (5-10)。利用量子效应构建分子级计算机的想法并不新鲜 (11-13)。这里详述的提议依赖于共振的选择性驱动,这是 Haddon 和 Stillinger (11) 用来在分子中诱导逻辑的方法,
主要关键词