卢森堡 *卢森堡共享的管理与财务部门(董事会G and and and and and C1,c2,h3和H4)**布鲁塞尔共享管理与财务部门(董事A董事A,B,C,C,D,E,F,H和我除外
量子信息利用独立和纠缠的量子系统来执行一系列信息处理任务,这比传统系统更具优势 [1]。量子通信是量子信息的一个主要分支,其目的是通过通信链路(光纤或自由空间信道)在远程方(通常称为 Alice 和 Bob)之间忠实地传输光子量子态 [2]。量子密钥分发 (QKD) 是一种重要的量子通信协议,其目标是在 Alice 和 Bob 之间远程生成共享密钥 [3-5]。其有效性已在长距离上得到证实 [6],这对于实际应用来说是理想的。过去,大多数量子通信实验都集中在点对点应用上,直到最近,人们对网络和多用户应用的兴趣才有所增加,并将大量精力集中在支持未来量子计算机网络的底层通信基础设施上,即所谓的量子互联网 [7]。与标准通信网络一样,路由将是实现单光子动态功能的一项基本功能。实现具有潜在快速响应时间的单光子路由器的直接方法是使用干涉仪 [8 – 11]。在 [8] 中,使用在其一条臂中带有相位调制器的马赫-曾德尔干涉仪 (MZI) 将单光子按需路由到其一个输出。基于 MZI 设计的具有两个输入和两个输出的单光子开关也已提出 [9]。在 [10] 中,还提出了一种基于 MZI 的耦合器,其中光子可以作为可调开关以任何分光比路由。在这些论文中,提出了三种路由配置,由于使用 MZI,所有这些配置都需要额外的主动相位稳定系统。为了获得更稳定的设计,另一种配置采用了 Sagnac 光纤
摘要 — 我们总结了一些关键的频谱感知测量挑战和最新进展。感知的实验室测试因其在现代硬件中不可分割且通常嵌入其中的作用而变得复杂。结果很难校准,因为物理参数通常是临时指定的或定义不明确的。除了二进制占用检测之外,传感器还需要更复杂的信号分类,这大大增加了测试范围。由于缺乏可接受的可测试参数来评估频谱感知对系统间频谱共享的贡献,频谱共享测试受到了进一步的阻碍。我们在此讨论的测量需求和方法涵盖导波和辐射物理测量、网络测量以及商业和政府频谱使用等领域。
摘要 — 我们总结了一些关键的频谱感知测量挑战和最新进展。感知的实验室测试因其在现代硬件中不可分割且通常嵌入的作用而变得复杂。由于物理参数通常都是临时或不明确的,因此很难校准结果。传感器需要更复杂的信号分类以及二进制占用检测,因此测试范围大大增加。由于缺乏可接受的可测试参数来评估频谱感知对系统间频谱共享的贡献,频谱共享测试受到了进一步的阻碍。我们在此讨论的测量需求和方法涉及导波和辐射物理测量、网络测量以及商业和政府频谱使用等领域。
摘要 — 我们总结了一些关键的频谱感知测量挑战和最新进展。感知的实验室测试因其在现代硬件中不可分割且通常嵌入的作用而变得复杂。结果很难校准,因为物理参数通常是用临时或不明确的定义指定的。传感器需要除了二进制占用检测之外的更复杂的信号分类,这大大增加了测试范围。由于缺乏可接受的可测试参数来评估频谱感知对系统间频谱共享的贡献,频谱共享测试受到了进一步的阻碍。我们在此讨论的测量需求和方法涵盖了导波和辐射物理测量、网络测量以及商业和政府频谱使用等领域。
摘要 — 我们总结了一些关键的频谱感知测量挑战和最新进展。感知的实验室测试因其在现代硬件中不可分割且通常嵌入的作用而变得复杂。结果很难校准,因为物理参数通常是用临时或不明确的定义指定的。除了二进制占用检测之外,传感器还需要更复杂的信号分类,这大大增加了测试范围。由于缺乏可接受的可测试参数来评估频谱感知对系统间频谱共享的贡献,频谱共享测试进一步受到阻碍。我们在此讨论的测量需求和方法涉及导波和辐射物理测量、网络测量以及商业和政府频谱使用等领域。
IJAZ AHMAD 1 , (IEEE 会员), SHARIAR SHAHABUDDIN 2 , HASSAN MALIK 3 , (IEEE 会员), ERKKI HARJULA 4 , (IEEE 会员), TEEMU LEPPäNEN 5 , (IEEE 高级会员), LAURI LOVÉN 5 , (IEEE 高级会员), ANTTI ANTTONEN 1 , (IEEE 高级会员), ALI HASSAN SODHRO 6 , (IEEE 会员), MUHAMMAD MAHTAB ALAM 7 , (IEEE 高级会员), MARKKU JUNTTI 4 , (IEEE 院士), ANTTI YLä-JÄSKI 8 , (IEEE 会员), THILO SAUTER 9,10 , (院士, IEEE)、ANDREI GURTOV 11 、(IEEE 高级会员)、MIKA YLIANTTILA 4 、(IEEE 高级会员)和 JUKKA RIEKKI 5 , (IEEE 会员) 1 VTT 芬兰技术研究中心,02044 Espoo,芬兰 2 诺基亚,02610 Espoo,芬兰 3 Edge Hill 大学计算机科学系,Ormskirk L39 4QP,U.K. 4 奥卢大学无线通信中心,90570 Oulu,芬兰 5 奥卢大学普适计算中心,90570 Oulu,芬兰 6 中瑞典大学计算机与系统科学系,瑞典厄斯特松德 7 Thomas Johann Seebeck 计算机与系统科学系,瑞典厄斯特松德电子学,塔林理工大学,12616 塔林,爱沙尼亚 8 阿尔托大学计算机科学系,02150 埃斯波,芬兰 9 计算机技术研究所,TU维也纳,1040 维也纳,奥地利 10 多瑙河大学集成传感器系统系 Krems, 2700 维也纳新城,奥地利 11 林雪平大学计算机与信息科学系,58183 林雪平,瑞典
欧洲委员会战略于2020年11月19日,该委员会发布了一项欧盟海上可再生能源战略,这是其更广泛的欧洲绿色交易(2019年12月)的一部分,以使欧洲能源消耗脱碳。伴随着一份员工工作文件,为离岸可再生混合项目的电力市场安排提供了监管指南,这些项目结合了发电和互连。该战略的主要目标欧盟战略认为从海上风产生的电量大幅增加了。欧盟的当前海上容量约为12吉瓦(GW),该策略提议到2030年至少增加400%至60 GW。随后的两个几十年将增加400%的增长,到2050年,总容量达到了300 gw(即当前水平25倍)。这将由大约40 gw的海洋能(潮汐和波浪)和其他新兴的海上技术补充(例如浮动风和太阳能,生物燃料的藻类)。这些新的离岸技术具有巨大的能源潜力,但仍然可以在商业基础上提供能源市场。相比之下,固定基础上的海上风是一项商业上可行的技术,其成本继续下降,使其与其他可再生能源以及化石燃料的竞争力。欧洲在海上风中保留了全球技术和市场领导力,欧盟占全球能力的42%。该战略的主要特征委员会估计,从现在到2050年,必须实现其拟议的目标,需要将近8000亿欧元的投资,大多数投资将来自私营部门。委员会将提供一个明确而支持的法律框架,涉及修订《十-E法规》,以协助长期的离岸网格计划,以及《国家援助能源和环境保护》以及可再生能源指令的修订,以支持越野跨境和混合项目。Member States should make full use of mainstream programmes such as the Connecting Europe Facility (cross-border energy infrastructure) and Horizon Europe (research and development of new energy technologies) to support offshore renewables, and are especially encouraged to allocate substantial funding for offshore projects under the exceptional €672.5 billion Recovery and Resilience Facility , of which 37 % is being channelled towards the green transition (including clean energy projects under the “电力向上”区域)。该委员会还旨在改善成员国之间的海上空间规划和区域合作,并将采取措施来帮助欧洲工业加强其供应链,增强其出口潜力,并保留其在可再生能源的市场领导地位。
Xiaohu YOU 1,2* , Cheng-Xiang WANG 1,2* , Jie HUANG 1,2 , Xiqi GAO 1,2 , Zaichen ZHANG 1,2 , Mao WANG 1,2 , Yongming HUANG 1,2 , Chuan ZHANG 1,2 , Yanxiang JIANG 1,2 , Jiaheng WANG 1,2 , Min ZHU 1,2 , Bin SHENG 1,2 , Dongming WANG 1,2 , Zhiwen PAN 1,2 , Pengcheng ZHU 1,2 , Yang YANG 3,4 , Zening LIU 2 , Ping ZHANG 5 , Xiaofeng TAO 6 , Shaoqian LI 7 , Zhi CHEN 7 , Xinying MA 7 , Chih-Lin I 8 , Shuangfeng HAN 8 , Ke LI 8 , Chengkang PAN 8 , Zhimin ZHENG 8 , Lajos HANZO 9 , Xuemin (Sherman) SHEN 10 , Yingjie Jay GUO 11 , Zhiguo DING 12 , Harald HAAS 13 , Wen TONG 14 , Peiying ZHU 14 , Ganghua YANG 15 , Jun WANG 16 , Erik G. LARSSON 17 , Hien Quoc NGO 18 , Wei HONG 19,2 , Haiming WANG 19,2 , Debin HOU 19,2 , Jixin CHEN 19,2 , Zhe CHEN 19,2 , Zhangcheng HAO 19,2 , Geoffrey Ye LI 20 , Rahim TAFAZOLLI 21 , Yue GAO 21 , H. Vincent POOR 22 , Gerhard P. FETTWEIS 23 & Ying-Chang LIANG 24
Xiaohu YOU 1,2* , Cheng-Xiang WANG 1,2* , Jie HUANG 1,2 , Xiqi GAO 1,2 , Zaichen ZHANG 1,2 , Mao WANG 1,2 , Yongming HUANG 1,2 , Chuan ZHANG 1,2 , Yanxiang JIANG 1,2 , Jiaheng WANG 1,2 , Min ZHU 1,2 , Bin SHENG 1,2 , Dongming WANG 1,2 , Zhiwen PAN 1,2 , Pengcheng ZHU 1,2 , Yang YANG 3,4 , Zening LIU 2 , Ping ZHANG 5 , Xiaofeng TAO 6 , Shaoqian LI 7 , Zhi CHEN 7 , Xinying MA 7 , Chih-Lin I 8 , Shuangfeng HAN 8 , Ke LI 8 , Chengkang PAN 8 , Zhimin ZHENG 8 , Lajos HANZO 9 , Xuemin (Sherman) SHEN 10 , Yingjie Jay GUO 11 , Zhiguo DING 12 , Harald HAAS 13 , Wen TONG 14 , Peiying ZHU 14 , Ganghua YANG 15 , Jun WANG 16 , Erik G. LARSSON 17 , Hien Quoc NGO 18 , Wei HONG 19,2 , Haiming WANG 19,2 , Debin HOU 19,2 , Jixin CHEN 19,2 , Zhe CHEN 19,2 , Zhangcheng HAO 19,2 , Geoffrey Ye LI 20 , Rahim TAFAZOLLI 21 , Yue GAO 21 , H. Vincent POOR 22 , Gerhard P. FETTWEIS 23 & Ying-Chang LIANG 24
