本文提出了一种基于EEG形波变换的EEG通道选择方法,旨在减少受试者的设置时间和不便,并提高脑机接口(BCI)的应用性能。具体而言,该方法通过同时解决关于EEG形波学习、超平面学习和EEG通道权重学习的嵌入逻辑损失最小化问题来选择前k个EEG通道。特别地,为了学习有区别的EEG形波来加权每个EEG通道对逻辑损失的贡献,在此过程中还最小化EEG形波相似性。此外,本文采用梯度下降策略来解决非凸优化问题,最终得到称为StEEGCS的算法。结果,与所有EEG通道相比,使用StEEGCS选择的EEG通道的分类准确率有所提高,并且分类时间消耗也减少了。此外,在几个真实世界 EEG 数据集上与几种最先进的 EEG 通道选择方法的比较也证明了 StEEGCS 的有效性和优越性。
我们提出了一种基于非支配排序遗传算法 (NSGA) 的癫痫发作分类脑电图 (EEG) 通道选择的多目标优化方法。我们在来自 CHB-MIT 公共数据集的 24 名患者的 EEG 数据上测试了该方法。该过程首先使用经验模态分解 (EMD) 或离散小波变换 (DWT) 将来自每个通道的 EEG 数据分解为不同的频带,然后为每个子带提取四个特征;两个能量值和两个分形维数值。然后通过 NSGA-II 或 NSGA-III 迭代测试获得的特征向量以解决两个无约束目标;最大限度地提高分类准确率并减少癫痫发作分类所需的 EEG 通道数量。我们的结果表明,仅使用一个 EEG 通道就能实现高达 1.00 的准确率。有趣的是,当使用所有可用的 EEG 通道时,与使用 NSGA-II 或 NSGA-III 选择 EEG 通道的情况相比,获得的准确度较低;即,在患者 19 中,我们使用所有通道获得的准确度为 0.95,而使用 NSGA-III 仅选择的两个通道获得的准确度为 0.975。获得的结果令人鼓舞,并且已经表明可以使用少量电极对癫痫发作进行分类,这为未来开发便携式 EEG 发作检测设备提供了证据。
近年来,国家支持的项目试图提高残疾人的社会参与度。然而,即使是患有运动神经元疾病 (MND)、全滑行状态 (TSD) 等神经肌肉疾病的人,其沟通能力也会受到干扰。脑机接口 (BBA) 已有几十年的历史,研究数量呈指数级增长,目前正在开发中,以使患有此类疾病的人能够与周围环境进行交流。拼写系统是 BBA 系统,它可以检测人们在屏幕上的字母和数字矩阵上关注的字母,并通过应用程序将其转换为文本。在这种情况下,通过屏幕上字母的随机闪烁,它旨在检测由于刺激而导致大脑中发生的电变化。研究表明,个体遇到的刺激会导致 EEG 信号中出现一个振幅,称为 P300,介于 250 到 500 毫秒之间。脑机接口通过 EEG 信号为因中风或神经退行性疾病而行动受限的个体提供环境互动。 EEG 信号的多通道结构既增加了系统成本,又降低了处理速度。因此,通过在过程中检测更多活动电极来降低系统成本,可以提高人们的可访问性。在此背景下,在电极选择中使用优化技术,通过随机选择方法确定最有效的通道。在研究中,使用基于群体的优化技术之一的粒子群优化算法与两个分类器(SVM 和 Boosted Tree)一起使用,并确定了八个最常选择的通道,以提高系统在速度和准确性方面的性能。
摘要:基于干涉技术的地静止亚毫米大气音响器是微波遥感的最新领域。配备了地形轨道气象卫星平台上的亚毫米大气遥感仪器,将同时增加观察频率,并提高云检测能力。当前的极性气象卫星观察系统可确保只有六个小时的观察期,次越小时和其他快速变化的天气系统进行实时观察。地静止的亚毫米声音[1-3]具有全天候工作,历史,大覆盖范围和实时的特征。可以观察到天气中动态变化的整个过程,为数值天气预测和短期预测提供了高的时间分辨率观察数据。在论文中,内容将主要包括通道的选择和分析地静止的干涉次要测量值。关键字:大气参数,地理次毫米声音,干涉技术,渠道选择