量子速度极限 (QSL) 定量估计了量子信息处理的速度 [1]。其历史根源深深植根于量子力学的基础中。因此,QSL 的首次出现是在能量-时间不确定关系的背景下 [2]。QSL 时间设定了两个量子态之间演化时间的下限。受海森堡能量-时间不确定原理的启发,Mandelstam、Tamm (MT) [2] 和 Margolus、Levitin (ML) [3] 推导出量子系统在状态之间演化所需的最短时间界限。这些界限结合起来,为封闭量子系统提供了 QSL 时间的严格界限。它们最初是为连接两个正交态的演化而开发的,随后被推广到任意初始混合态以及非正交态之间的演化 [4]。最近开发了另一种基于状态间几何距离的方法 [5]。近十年来,在开放量子系统 [ 6 ] 的背景下,QSL 的定义得到了发展 [ 7 – 9 ]。QSL 的概念已用于阐明量子信息 [ 10 , 11 ]、开放系统 [ 12 – 15 ]、量子系统控制 [ 16 ] 和量子热力学 [ 17 , 18 ] 的各个方面。此外,利用因果关系和热力学,重要的 Bremermann-Bekenstein 边界 [ 19 , 20 ] 将每比特信息的能量成本与 QSL 时间联系起来。QSL 概念可用于解决的另一个基本问题是量子态的固有稳定性 [ 21 ]。近年来,量子信息思想与相对论量子力学的相互影响尤为卓有成效。相对论量子模拟影响了 Leggett–Garg 不等式 [ 22 , 23 ]、弯曲时空探测 [ 24 ]、几何相位 [ 25 ] 和中微子和中性介子等亚原子粒子相干性 [ 26 ] 的发展。它还引发了对 Unruh 效应的研究 [ 27 ]。此外,在最近的一项研究中 [ 28 ],研究了非局域性对信息传播速率(以蝴蝶速度为特征)的影响,结果表明,随着磁场的增大,非局域性会增大。
在1984年,迈克尔·贝瑞(Michael Berry)报告了一项被证明具有令人惊讶的应用程序的发现。Berry [1]表明,如果量子机械系统的哈密顿量依赖于以绝热方式循环变化的外部参数,则仅取决于汉密尔顿人的每个非排定特征态,仅根据参数空间的几何形状而获得相位。如今,浆果阶段在几乎每个现代物理学的每个分支[2,3]中是一个核心重要性的概念,包括物质拓扑状态[4-6]和量子计算[7-10]的近期领域。在[1]发表后几年,Aharonov和Anandan [11]扩展了Berry的作品,表明几何阶段可以与每个周期性发展的系统相关联,而不仅仅是那些能够绝步地发展的系统。尽管通常称为非绝热阶段,但Aharonov-Anandan几何阶段也被定义为绝热的系统,然后与浆果阶段一致。aharonov-anandan阶段既不取决于进化时间,也不取决于系统的发展速率。然而,遵循的路径循环发展为获得非平凡的aharonov-anandan阶段,不能任意短。在本文中,我们根据其aharonov-anandan阶段得出了状态封闭曲线的Fubini研究长度的下限。然后,从Mandelstam-Tamm量子速度限制的几何解释开始[12,13],我们在生成指定的Aharonov-Anandan相的时间上得出了一个紧密的下限。我们已经组织了如下的论文。有趣的是,Margolus-Levitin量子速度极限[14]也连接到Aharonov-Anandan相。使用Margolus-Levitin量子速度限制的几何描述[15],我们在生成Aharonov-Anandan相的时间上得出了另一个紧密的下限。通常,量子速度限制是对以指定方式转换量子系统所需的时间的基本估计[16,17]。所宣布的,此处得出的进化时间估计源自Mandelstam-Tamm和Margolus-Levitin量子速度限制的几何特征[12,14,15,18 - 18 - 21]。在第2节中,我们回顾了aharonov-anandan几何阶段的定义,在第3节中,我们对动态驱动的系统驱动并讨论了Margolus- levitin类型估计的某些特性,并由时间独立的Hamiltonians驱动。Margolus-Levitin类型的估计值不会直接扩展到具有时间依赖的汉密尔顿人的系统[21],而是Mandelstam-