惯性质量,J 101 537 . 5 kg m 2 阻尼,B 100 N ms / rad 极对数,p 2 变速箱速比,N 24 . 12 叶片长度 + 轮毂,R m 13 . 5 m 转子电阻,R r 0 . 007 645 44 Ω 转子电感,L r 0 . 007 067 33 H 定子电阻,R s 0 . 009 585 76 Ω 定子电感,L s 0 . 000 252 35 H 定子电流。 d 轴,isdisd ≥ 0 A 定子频率,ω s ω s ≥ 0 rad / s 初始转子频率,ω r 0 2 rad / s 转子频率,ω r ω r ∈ [ 0 , 9 . 208 ] rad / s 直流母线电压,vv ∈ [ 437 , 483 ] V (460 V ± 5%) 直流母线电阻,R 1000 Ω 直流母线电容,C 0 . 1 F 连接电感,L 0 . 001 H 连接电阻,R 0 . 05 Ω 时间窗口 600 s 直流母线电压,vv ′′ ∈ [ − 20 , 20 ] V / s 2
蛋白质的展开形式是氨基酸的线性序列。蛋白质结构预测试图找到给定蛋白质的天然构象,这在药物和疫苗开发中具有潜在的应用。经典的蛋白质结构预测是一个 NP 完全的、未解的计算问题。然而,量子计算有望提高经典算法的性能。在这里,我们在二维方格上的疏水-亲水模型中开发了一种量子算法,用于解决任何长度为 N 的氨基酸序列的问题,其速度比经典算法快二倍。这种加速是使用 Grover 的量子搜索算法实现的。该算法可用于任意长度的氨基酸序列。它包括三个阶段:(1)准备一个编码所有可能的 2 2 ( N − 1 ) 种构象的叠加态,(2)并行计算每种可能构象的坐标和能量,以及(3)找到具有最小能量的构象。空间上的渐近复杂度为 O ( N 3 ) ,而与经典算法相比,获得的加速比是二次的。我们已使用 Qiskit SDK 在 IBM Quantum 的 qasm 模拟器上成功模拟了该算法。此外,我们还通过计算找到正确构象的理论概率进一步证实了结果的正确性。
在训练场景中,英特尔® Gaudi® 3 加速器相对于上一代产品几乎所有的先进功能都发挥了作用。由于训练场景是计算密集型的,因此增加的计算比率可带来立竿见影的效果。增加的 HBM 带宽允许更大的计算来体现增加的计算能力。此外,更大的 HBM 容量也有助于提高性能。更大的 HBM 容量允许增加批处理大小,从而实现更高的计算利用率,并避免重新计算某些部分工作负载或避免模型并行拆分,从而在运行时增加网络操作。一般而言,LLM 推理吞吐量由可用的 HBM 带宽决定,可用于读取模型参数和上下文窗口。将英特尔® Gaudi® 3 加速器与英特尔® Gaudi® 2 加速器进行比较时,我们发现对于小型 LLM(13B 大小的模型或更小),加速比与两代加速器之间的 HBM 带宽比率相似,大约为 1.5 倍。然而,当比较较大的 LLM 模型(如 LLama-70B 和 Falcon-180B)时,我们看到改进大于 HBM 带宽比,并且超过了 2 倍的比率。更大的改进是由于英特尔® Gaudi® 3 加速器可用的内存容量更大。这种更大的容量允许使用更大的批处理大小,因此可以在给定的时间内处理更多的样本。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术以改善 VAWT 空气动力学并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术,以改善 VAWT 空气动力学性能并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。