由于数据中的信息有限,从集合电流的离子通道门控的足够的离子通道门控的足够动力学方案是一项艰巨的任务。我们通过使用并行的贝叶斯过滤器来解决此问题,以指定隐藏的Markov模型以进行当前和荧光数据。我们通过包括不同的噪声分布来证明该算法的灵活性。当应用于具有逼真的开放通道噪声的贴片夹数据时,我们的广义Kalman滤波器的表现优于经典的Kalman滤波器和速率方程方法。衍生的概括还可以包含正交荧光数据,使无法识别的参数可识别,并将参数估计值的精度提高到数量级。通过使用贝叶斯最高信誉量,我们发现我们的方法与速率方程方法相比产生了现实的不确定性量化。此外,贝叶斯过滤器可为更广泛的数据质量提供可忽略的偏差估计。对于某些数据集,它标识了比速率方程方法更多的参数。这些结果还证明了总体上贝叶斯信誉量评估算法的有效性的力量。最后,我们表明,与速率方程方法相比,在模拟转换之前通过模拟转换或荧光数据的有限时间分辨率引起的模拟过滤引起的误差更强大。
摘要 - 这项工作是解决量子仪器的数据驱动建模问题并启用模型可以解释的。首先,提出了一种数据驱动的物理迭代(DPI)建模方法来解决具有基于现象学速率方程描述的量子系统的动态行为的复杂物理系统的建模问题。第二,提出的DPI建模方法结合了快速采样技术,该技术被泰勒平均值定理证明是可行的,以解决非自治系统的建模问题。第三,最小二乘标准和大量法则证明了所提出的方法的融合。最后,将DPI建模方法部署在光学泵送磁力计(OPM)和自旋交换宽松量表(SERFCM)中,在完成量子仪器建模的同时,估算了系统的物理参数。数值模拟和实际实验支持理论结果。
许多量子信息协议的实施需要对量子寄存器进行有效的初始化。在本文中,我们优化了一种粒子捕获协议,用于初始化与金刚石中单个氮空位 (NV) 中心相关的混合自旋寄存器。我们通过使用一系列微波、射频和光脉冲极化 NV 的电子和核自旋来初始化量子寄存器。我们使用速率方程模型来解释光脉冲作用下的粒子分布。将该模型与通过执行部分量子态层析成像获得的实验数据进行了比较。为了进一步增加自旋极化,我们提出了一种具有优化光脉冲的递归协议。我们还讨论了核和电子自旋泵送速率的相对值在实现最大自旋极化程度中的作用。
摘要:持续的发光材料在智能信号,抗矛盾和体内成像等各个领域都有应用。但是,缺乏对控制持续发光的确切机制的透彻理解,因此很难开发优化它的方法。在这里,我们提出了一个精确的模型,以描述Znga 2 O 4:Cr 3+的持续发光的各种过程,这是现场的主力材料。已经解决了一组速率方程,并且已经对电荷/放电和热发光测量进行了全局拟合。我们的结果建立了陷阱深度分布和余滴动力学之间的直接联系,并阐明了与Znga 2 O 4:Cr 3+纳米颗粒相关的主要挑战,确定了较低的陷阱概率和光学偏差,这是限制Znga 2 O 4:CR 3+的主要因素,并与大型Margin进行改进。我们的结果强调了准确建模对于未来余辉材料和设备设计的重要性。
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
实现具有吸引人的性能指标和与硅光子平台兼容的紧凑型芯片脉冲激光器是当代纳米光子学的重要目标。在这里,是否可以将2D材料用作增益和饱和吸收介质来实现紧凑型综合Q-用被动Q开关的纳米光激光器的基本问题,并通过检查广泛的2D材料家族来提出和解决。通过开发涉及半古典速率方程的时间耦合模式理论框架来进行研究,该框架能够通过2D材料严格处理增益和可饱和的吸收,从而可以执行稳定性和分叉分析涵盖广泛的参数空间。可以通过不同的2D材料获得脉冲训练指标(重复速率,脉冲宽度,峰值功率)的范围。我们的工作表明,使用2D材料增强的纳米光腔可以使被动q交换,重复速率不得超过50 GHz,短脉冲持续时间降至几个picseconds,而峰值功率超过了几毫升。如此有吸引力的指标,以及2D材料的超薄性质以及电气调整其性质的能力,证明了提出的紧凑和灵活的集成激光源的平台的潜力。
摘要 本文介绍了一种基于闪蒸还原的新型炼铁技术的开发。开发从动力学可行性的证明开始,考虑到典型的闪蒸反应器仅提供几秒钟的停留时间。随后在实验室闪蒸反应器中进行测试,最后进行中试操作。本文制定的速率方程是考虑到温度、停留时间和还原气体分压的最佳组合而开发的,以实现 > 95% 的还原度。在中型实验室闪蒸反应器中进行的实验表明,在低至 1175 °C 的温度下,在几秒钟的停留时间内可以获得 90% 以上的还原度。安装并运行了一个在 1200-1550 °C 下运行的中试反应器,以收集扩大工艺所需的数据。在这个大型反应器中进行的测试验证了设计概念在供热和停留时间方面的有效性,并确定了技术障碍。这项研究证明了闪蒸炼铁技术的技术可行性。这项工作的结果将有助于工业闪蒸炼铁反应器的设计。与平均高炉炼铁工艺相比,该项新技术预计可降低炼铁能耗高达 44%,并减少二氧化碳排放量高达 51%。
如前所述,熵产生(表征热力学过程的不可逆性的关键数量)与系统自由度及其热环境之间的相关程度的产生有关。这就提出了一个问题,即这种相关性是否具有分类或量子性质,即,是否可以通过对相关自由度的局部测量来访问它们。我们通过考虑费米子和玻色症高斯系统来解决这个问题。我们表明,对于费米子,熵产生主要是量子的,这是由于均衡超选择规则限制了一组物理允许的测量值,从而显着限制了经典可访问的相关性的数量。相比之下,在骨髓系统中,可以通过高斯测量访问更多的相关性。特别是在低温下量子的贡献可能很重要,但在高温限制中,熵产生对应于纯粹的经典位置 - 摩托明相关性。我们的结果表明,在熵产生的显微镜公式中,费米子和骨系统之间存在着关于存在量子到古典跨性别的重要区别。他们还表明,即使在弱耦合极限中,熵产生也可能主要是由量子相关性引起的,该耦合极限在状态种群的经典速率方程方面以及在低粒子密度极限中的描述,其中玻色子的传输性能和费米子的运输特性将其转化为经典颗粒的粒子。
摘要:激子和光子之间的强相互作用会导致激子 - 两极子的形成,与其成分相比,具有完全不同的特性。通过将材料合并到电磁场紧密限制的光腔中,产生了极化子。在过去的几年中,偏光态的放松已被证明可以实现一种新型的能量转移事件,该事件的长度比典型的fo rster rster半径大大大。但是,这种能量转移的重要性取决于短寿命的极化状态有效衰减到可以执行光化学过程的分子局部状态(例如电荷转移或三重态状态)的能力。在这里,我们在强耦合方面定量地研究了极性子与红细胞B的三胞胎状态之间的相互作用。我们使用速率方程模型分析了实验数据,主要采用角度分辨反射率和激发测量值。我们表明,从极化子到三重态的跨系统交叉的速率取决于激发极性状态的能量比对。此外,可以证明,在强耦合方案中,可以大大提高间间穿越速率,直到接近北极星辐射衰减的速率。■引言激子 - 果龙是由于激子与电磁场之间的强烈相互作用而产生的。1,2鉴于从极化元素到分子局部态在分子光物理学/化学和有机电子中提供的机会,我们希望对从这项研究获得的这种相互作用的定量理解将有助于开发Polariton Empowered设备。