拓扑光子学为实现更强大的光学器件以抵抗某些缺陷和环境扰动提供了一种有前途的方法。量子逻辑门是量子计算机的基本单元,广泛应用于未来的量子信息处理。因此,构建强大的通用量子逻辑门是实现实用量子计算的重要途径。然而,要解决的最重要的问题是如何构造具有拓扑保护的量子逻辑门所需的 2×2 分束器。本文报道了拓扑保护的反向耦合器的实验实现,该耦合器可用于在硅光子平台上实现量子逻辑门,包括控制非门和阿达玛门。这些量子门不仅具有很高的实验保真度,而且对某些类型的缺陷表现出一定程度的容忍度。这项工作为实用光量子计算和信号处理的发展铺平了道路。
这项研究提出了以下假设:糖酵解中三氧磷酸异构酶(TIM)是一种量子逻辑门。利用量子力学,我们将蒂姆的二羟基丙酮(DHAP)催化转化为3-磷酸甘油醛(G3P)作为量子操作,参与精确的质子转移。为了探索这种量子行为的更广泛的含义,我们开发了一种量子模型,以评估钠 - 葡萄糖共转运蛋白2抑制剂(SGLT2I)对甲基聚糖形成的影响,这是一种与先进的糖化终极产物相关的有毒副产物(AGES)。我们的模型预测,SGLT2I可以通过降低中间形成的可能性来减少甲基甘氨酸,从而为在临床环境中观察到的保护作用提供了一种机制,包括糖尿病,肾病和心力衰竭的血管和肾脏性。通过将蒂姆重新构图为量子逻辑门,本研究不仅挑战了酶促功能的传统观点,而且为量子生物学开辟了新的途径,对代谢性疾病研究和药物开发的未来产生了深远的影响。此外,考虑到由于量子隧道效率低下而导致的甲基乙二醇,可以假设一种新的“ Noxa patogena”,将其作用解释为量子干扰。
Thomas Sun Federsen 1,2,∗,I。Abramovic3,1,A。A。Force 1,N。Allen 5,A。A. Alonso 6,G。Anda 7,T。Andreeva 1,C Furnace 9,K。Avradies 10,E。Aymerich 11,S.-G.。 Baek 3 , J. Balden 12 , M. Balden 1 , M. Balden 8 , J C. Beadler 1 , C Border 1 , D. Borodin 17 , J. Boscary 8 , H. Bosch 1 , 18 , T. Bosmann 1 Brunner 1 , St. Busers 1 , R. Bussiahn 1 , B. Butttenschön 1 , A. K. Camacho Mata 1 , I. Campaign 20 , B. Cannas 11 , A. Cappa 6 , A. Cars 1 , F. Carovani Castle 6,N。Chadge1,I。Celes23,A。保持24,J.W。K. Clore 26,G。Ceh 7,B.,A。Destay 13,St.Denk 3,C。Dhard 1,A。Dinkleg 12,T。Dittmar17,M。Dreval14,M。Dravlak1,P。Drews17,D。Dunai7,Edlund 3,F。Endler1,D.A。首字母5,F.J。Escoto 6,T。Strawberry 6,E。13,St.Freunt 1,G。他妈的1,M。Fukuyama 30,Garden Regain 6,I。Garci-Cort是6,J。Gaspar31,D.A。盖茨29,J。Geiger1,B。Geiger13,L Graves 12,J.绿色13,E。Grelier9,H。Greener8 8,St。Grote1,M。Groth34,M.Günter8,V。Haak1,M。M.有1,P。Han 3,J.H。 Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C 全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,Han 3,J.H。Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C 全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,
生理过程和疾病发生与化学小分子和表观遗传变化(microRNA或甲基化)等信号密切相关。1例如,microRNA的异常表达与多种严重疾病密切相关,金属离子的浓度变化或有毒金属离子的存在与各种疾病有关。2,3因此,开发检测与发病机理相关基因或临床相关的小分子的传感器对于医学诊断很重要。最近,很大的效果已致力于建立用于检测疾病相关的核酸,金属离子或其他小分子的纳米版本。4 - 9在各种纳米台词中,基于DNA适体的传感器由于其高特征城市和官能化而引起了广泛的关注。4,10尽管取得了这些成就,但传感器的单功能性质和不可控制性限制了其进一步的应用。一方面,对多个分析物的识别对于诊断和治疗非常重要,因为仅通过在某种情况下监测单个目标来进行诊断不足以进行诊断。在另一个
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备在紧凑的表面贴装封装中提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离的、多通道和双向高速光耦合器。通过专利工艺技术,以单片形式集成多个光耦合器。这些设备在紧凑的表面贴装封装中提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
III. 单个神经元作为电化学通用逻辑门 逻辑门是执行单个布尔计算/函数/操作的构建块(基本组件),当它们组合在一起时,它们构成组合逻辑电路。逻辑门的例子包括 AND、OR、NOT 等。通用逻辑门是一种逻辑门,它可以通过与类似的通用逻辑门组合来执行所有类型的布尔计算/函数/操作,而无需任何其他类型的逻辑门。例子包括 NAND 和 NOR。只需使用一种类型的通用逻辑门组合,就可以创建用于执行任何特定任务/操作的功能组合逻辑电路。众所周知,神经元通过电化学信号进行通信。单个神经元从其树突接收电化学输入,并通过其轴突末端/突触输出电化学信号。根据单脑理论,单个神经元是一种通用逻辑门,它以不同的组合方式可以执行所有可能的布尔运算并形成电化学组合逻辑电路。我们已经知道,大脑的不同部分/区域执行不同的功能,单脑理论认为,大脑的这些不同部分/区域是执行不同任务的不同电化学组合逻辑电路,每个电路都由如上所述的大量神经元组成。