硬度是草莓最重要的果实品质性状之一。这种软果实采后保质期在很大程度上受到硬度损失的限制,而细胞壁的分解起着重要作用。先前的研究表明,多聚半乳糖醛酸酶 FaPG1 在草莓软化过程中对果胶的重塑起着关键作用。在本研究中,使用农杆菌传递的 CRISPR/Cas9 系统生成了 FaPG1 敲除草莓植株。获得了 10 个独立品系 cv.“Chandler”,经 PCR 扩增和 T7 内切酶测定确定所有品系均已成功编辑。使用靶向深度测序分析了定向诱变插入和删除率。编辑序列的百分比从 47% 到几乎 100% 不等,其中 7 个选定品系的编辑序列百分比高于 95%。表型分析表明,在所分析的 8 个品系中,有 7 个品系产生的果实明显比对照更坚硬,硬度增加了 33% 到 70%。 FaPG1 编辑程度与果实硬度增加呈正相关。其他果实品质特征(如颜色、可溶性固体、可滴定酸度或花青素含量)的变化很小。编辑后的果实在采后软化率降低,蒸腾水分损失减少,受灰葡萄孢菌接种的损害较小。对四个潜在脱靶位点的分析未发现突变事件。总之,使用 CRISPR/Cas9 系统编辑 FaPG1 基因是提高草莓果实硬度和保质期的有效方法。
通过短肽桥与Murnac残基交叉连接的N-乙酰葡萄糖和N-乙酰基氨基酸(MURNAC)的多个单位网络。真菌CWS(FCW)由几层原纤维组成。组成因物种而异,但是它们主要组成(1→3)/(1→6) - 𝛽 -glucan,(1→3) - 𝛼 -glucan,几丁质和糖蛋白。它由80-90%的糖蛋白,脂质和其他次要成分组成。酵母CWS由(1→3)/(1→6)-Glucan,甘露蛋白和几丁质组成。红色藻类含有带有亚硫酸盐残基的星系杂聚物以及甲基化的糖,甘露糖,阿拉伯糖和核糖等次要成分。但是,基本的构建块是醛酸3- o-(α-d-
摘要。越来越多的传统塑料使用造成了一些大问题,从石油危机作为塑料生产的原材料以及地球上无法降解的塑料废物的积累。解决问题的有希望的措施之一是使用可再生材料制成的环保生物降解塑料。该项目的目的是表征来自香蕉皮的生物塑料的特性。该过程始于用盐酸从香蕉皮中提取果胶,然后添加水,caso 4,木薯淀粉,乙酸,甘油以形成塑料。果胶提取物的分析可赋予8.3%的果胶产量,29%的水含量,10%的灰分含量,4.9%的六氧基含量,50%的半乳糖醛酸含量和13.8%的酯化度。以下过程后获得的塑料的厚度为0.28 mm,吸水能力为53.8%,并且具有某些特征的生物降解。
Manuel Benedetti 博士于 2012 年在罗马大学获得植物科学博士学位,并继续担任博士后直至 2016 年。在此期间,他从事植物免疫领域的工作,特别关注真菌多聚半乳糖醛酸酶及其植物抑制剂形成的蛋白质复合物的结构分析、细胞壁损伤相关分子模式 (DAMP) 的体内分离以及新型植物来源寡糖氧化酶的鉴定。2016 年至 2019 年,他在维罗纳大学担任博士后,其研究活动集中于利用转基因微藻降解木质纤维素生物质。自 2019 年起,Benedetti 博士担任拉奎拉大学植物生理学助理教授,他正在研究新型细胞壁作用酶的表征以及使用生化和转基因方法分析其生理作用。
纤维素有多种形式,其中很大一部分来自生活垃圾和工业垃圾 [28]。半纤维素可能是各种聚合单糖的混合物,如醛己糖、甘露糖、半乳糖、木糖、阿拉伯糖、4-O-甲基葡萄糖醛酸和半乳糖醛酸残基 [39]。在硬木木聚糖中,主链由通过 β -(1,4)-糖苷键偶联并通过 α -(1,2)-糖苷键与 4-O-甲基葡萄糖醛酸基团分支的木糖单元组成 [38]。木质素是由苯丙烷类前体合成的芳香族化合物。聚合物的基本化学苯丙烷单元(主要是紫丁香基、愈创木基和对羟基苯酚)通过一组键连接在一起,形成基质。该基质含有多种有用的基团,如甲氧基和羰基,它们赋予聚合物有机化合物高极性[40]。
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
具有富含镍的阴极的锂金属电池(LMB)是下一代高能密度电池的有前途的候选者,但是缺乏能力保护性的电极/电解质相互作用(EEIS)限制了其周围性。在此,提出了三氧基苯苯作为局部浓缩离子液体电解质(LCILES)的助理,以增强EEIS。通过对纯离离子液体电解质(ILE)和三个使用纤维苯,三甲基苯基苯或三氧基苯苯的比较研究电导率和功能,以及通过调节1-乙基-3-甲基咪唑醛酸阳离子(EMIM +)和BIS(FuroSulfonyl)酰亚胺阴离子的贡献,EEIS的组成。Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm − 2 lithium metal anodes (LMAs), 21 mg cm − 2 LiNi 0.8 Co 0.15 Al 0.05 (NCA) cathodes, and 4.2 μ L mAh − 1 electrolytes for 150 cycles with a remarkable capacity retention 71%,这要归功于LMA上富含无机物种的固体电解质相,尤其是富含EMIM +衍生物种的NCA阴极上的均匀阴极/电解质相间。相比之下,在相同条件下的容量保留率分别仅为16%,46%和18%,而基于氟苯和苯并二烯氟化物的LCLE分别为16%,46%和18%。
总结花粉壁外部为雄性配子体提供了一个保护层,并且主要由孢子囊素组成,其中包括脂肪酸衍生物和酚类。但是,外部外部的生化性质知之甚少。在这里,我们表明,在没有脊柱花粉(GHNSP)中突变的棉花1355a导致外部形成缺陷。通过基于地图的克隆鉴定了GHNSP基因座,并通过遗传分析(使用CRISPR/CAS9系统的共处测试和等位基因预测)确认。原位杂交表明,GHNSP在tapetum中高度表达。ghnsp编码与ATQRT3同源的多边形乳糖苷酶蛋白,该蛋白在花粉外外的形成中提出了聚半乳糖苷酶的功能。这些结果表明GHNSP在功能上与ATQRT3不同,后者具有微孢子分离的功能。生化分析表明,在发育阶段8的1355a花药中,去酯果胶的百分比显着增加。此外,使用对抗酯的抗体和酯化的均质均质乳糖醇(JIM5和JIM7)的抗体研究表明,GHNSP突变体在录音带中表现出丰富的脱骨含量同质性的,它具有磁带和外在的,具有特殊的远处,具有较为有效的效果。GHNSP的表征提供了对多边形乳糖醛酸酯酶和去酯的同型乳半乳糖醇在花粉外部形成中的作用的新理解。
后生物学,代表生物学家族的最新成员,是由于乳酸细菌(LAB)在de Man,Rogosa和Sharpe(MRS)中的发酵而产生的代谢产物,其中包括蛋白质,糖和矿物质。生物后的成分包括外多糖(EPS),短链脂肪酸(SCFA),细菌素,抗氧化剂和代谢酶。几项研究表明,生物学后具有多种特性,例如抗菌,免疫调节,抗氧化剂,抗炎,抗肥胖,抗糖尿病和抗肿瘤特性。天然多糖是指从包括藻类,植物,动物和微生物在内的生物生物中获得的多糖。多糖是分支或线性大分子,由几种主要和一些次要的单糖组成,包括葡萄糖,果糖,果糖,甘露糖,阿拉伯糖,半乳糖糖,半乳糖酸酯,半乳糖醛酸,葡萄糖糖胺,半乳糖胺或衍生物。类似于生物后,多糖也表现出抗炎,抗菌,抗肿瘤,抗病毒,免疫调节和抗氧化特性。尽管由于缺乏特定的酶,人体不能直接消化多糖,但可以通过肠道遗留细菌(包括但不限于实验室)消化它们。最近的研究表明,大量的非淀粉多糖,例如藻酸盐,富藻酸酯,壳聚糖,角叉菜胶和瓜尔胶可以降解为低分子量的寡糖寡糖,这反过来又可以为人类健康提供健康益处。这些新发现激发了我们提出基于多糖后的后生物学,也称为糖培养基及其潜在应用。我们建议可以通过益生菌发酵多糖,随后的细菌去除将提高其生产的代谢产物的安全性,包括寡糖,二糖,单糖和衍生物。这些基于多糖的后生物学可能模仿体外多糖的代谢,从而扩大了生物后的应用。诸如Akkermansia Muciniphila和其他细菌等非刺激药也可以用于糖生物生产,从而为人类健康提供了新的应用。
源对碳(C)分配是由水槽强度驱动的,即水槽器官进口C的能力,在组织生长和生物量生产率中起着核心作用。但是,在树木中尚未彻底表征水槽强度的分子驱动因素。生长素作为主要的植物植物激素,可调节源组织中光剂量的动员,并提高碳水化合物向水槽器官(包括根)的易位。在这项研究中,我们使用了“生长素刺激的碳汇”方法来了解杨树中长距离源 - 键C分配中涉及的分子过程。杨树碎屑被叶面喷涂,上面喷涂了极地生长素传输调节剂,包括生长素增强剂(AE)(即IBA和IAA)和生长素抑制剂(AI)(即NPA),然后全面使用生物量评估,均经材料来对叶片,茎和根组织进行全面的分析,均质和均质概况,均经均经材料,c isotope and coptope and coptope and coptoper nertem nertops和coptoper nertops nekotom and et necotom nerting nekoling,et negoling noursem。生长素调节剂改变了根部干重和分支模式,AE增加了光合固定的C从叶片到根组织。转录组分析在AE条件下确定了根组织中高度表达的基因,其中包括编码多半乳糖醛酸酶和β-淀粉酶的转录本,这些转录物可能会增加水槽的大小和活性。代谢分析表明,总代谢的变化,包括甲醇的相对丰度含量改变,在AE和AI条件下,根组织中柠檬酸盐水平的相反趋势。总而言之,我们假设一个模型表明,流动糖醇,淀粉代谢衍生的糖和TCA-Cycle中间体可以作为杨树中的源– sink C关系,作为水槽强度的关键分子驱动因素。