2017 导师,本科项目,“基于 Laplace Beltrami 特征函数水平集的脑回分析”。澳大利亚墨尔本大学生物医学工程系和洛杉矶南加州大学 (USC)。学生:R. Shishegar
【2023年度成果(论⽂・特许)】1。J. H. Park等人,高度耐用的石墨烯封装的基于铂的电催化剂,用于通过溶液等离子体过程合成的氧气还原反应,功率来源杂志,580(2023),233419,2。J. H. Park等人,高度耐用的碳壳的新溶液等离子体合成,用于聚合物电解质膜燃料电池的高度耐用碳壳基于铂基的阴极催化剂,碳,214(2023),118364,3。M. Huda等人,单壁碳纳米管支持PT电催化剂作为单个燃料电池的阴极催化剂,其耐用性高/关闭/关闭电势循环,ACS Applied Energy Materials,6(2023)12226-12226-12226-122236 4。H. N. Nam等人,第一原告对石墨烯和氮掺杂石墨烯涂层的铂电催化剂的氧还原反应机制的研究,物理化学化学物理学,26(2024)10711-10722 5。出愿番号:2024-025901
临时校区位于斯利那加加瓦尔政府理工学院(北阿坎德邦加瓦尔保里区)。斯利那加距离瑞诗凯诗约 105 公里,位于通往巴德里纳特(距斯利那加约 193 公里)的 58 号国道上。瑞诗凯诗是最近的火车站。北阿坎德邦的主要火车站哈里德瓦尔距斯利那加加瓦尔约 140 公里。最近的机场是德拉敦的乔利格兰特,距斯利那加加瓦尔约 125 公里。从机场可乘坐出租车前往斯利那加加瓦尔。从德拉敦/瑞诗凯诗/哈里德瓦尔可乘坐巴士和出租车前往斯利那加。从瑞诗凯诗到斯利那加大约需要 3 小时。在雨季,道路可能会因山体滑坡而封闭。请考生在计划报道时预留一天空闲时间。到达斯利那加的另一种方式是从 Kotdwara(经由 Pauri)出发,大约 140 公里,耗时约 5 小时。
维护全球机队需要全球协调,并全面获取经验丰富的支持代表的知识。我们以您为中心,全心全意为您服务,并通过通用航空最大的全球支持网络为您的 Denali 飞机提供支持。您可以信赖德事隆航空,我们将以卓越的零件供应、有竞争力的价格和强大的分销系统为您提供支持。您获得的优质支持始终高效、可靠,并且全天 24 小时可用。
a) 《网络铁路哈德斯菲尔德至西城(德斯伯里)命令》(《1992 年运输和工程法》(《TWA》)第 1 和 5 条规定下的《命令》);以及 b) 一项指令,根据条件授予《命令》所针对的工程的视为规划许可。 2. 申请的命令将授权 NR 在哈德斯菲尔德和西城(德斯伯里)之间的北跨宾宁铁路线上进行建设、运营和维护,以增加运力并缩短哈德斯菲尔德和西城(德斯伯里)之间以及曼彻斯特、利兹和约克之间铁路服务的旅程时间和性能可靠性(《计划》)。该命令将授权 NR 获取土地、土地底土、空域、地锚权和土地权益,包括施加限制性契约,以及为《命令》授权的工程目的临时获取和临时使用土地。该命令还将授予与铁路建设和运营相关的权力。3. 住房和社区部 (DLUHC) 国务大臣将与本决定一起发布其决定,涉及根据 1981 年《土地征用法》第 19 条申请开放空间证书以及根据第 19 条申请列入名录建筑物许可的九份申请。
在实施之前的 2022-2023 年激励策略报告建议时,经济适用房咨询委员会 (AHAC) 在 2022 年和 2023 年的会议上讨论了修改布里瓦德县土地开发条例 (LDRS) 第十七条第 62-3000 至 62-6311 节中的现有激励措施以及最近通过的《本地生活法案》要求的潜在修订。在 2023 年 10 月 19 日和 2023 年 11 月 16 日的 AHAC 会议上,讨论了 LDRS 中的现有激励措施和潜在修订的工作草案。AHAC 建议工作人员继续与相关合作县部门、机构和法律人员协调,进一步审查、评估和制定修订,以便将来修订县 LDRS 和/或综合计划(如适用),包括《本地生活法案》的要求。
近十年来,有两项突破性技术在里德堡量子计算研究中发挥了重要作用,影响了该领域目前取得的显著进展。第一项是里德堡阻塞效应[1-3],它使得中性原子的纠缠成为全球原子量子研究中的日常工具;第二项是原子重排方法[4-6],该方法利用一组可移动的光镊构建无缺陷的任意原子图,如图1所示。这里我们使用术语里德堡原子图,因为构建的原子阵列的可能几何形状不仅限于物理三维空间中的晶体结构,而更适合用数学图形来表示,数学图形是超几何空间中的顶点和边的集合。在这方面,一般形式的里德堡原子系统可以称为里德堡原子图(或简称里德堡图)。
•农业是温室气体排放的主要来源:可以减少这些排放•农业是一种气候变化解决方案:减少和避免排放和碳固执•范围•属于“气候智能农业的伞”下的习惯,“再生的农业”,“维护农业”,“维护农业”,“使农业变得更改 - ”,“维护农业” - “维护农业”,“越来越多”,“耕种”,“维护农业”,“越来越多” - “维护农业” - “维护农业” - ”
本论文研究了使用里德堡原子的量子模拟。量子模拟的理念是使用一个可控性良好的量子系统来模拟另一个量子系统。量子模拟旨在前瞻性地解决经典计算机无法有效处理的具有挑战性的模拟问题,例如探索高度纠缠的多体基态和动力学。我们专注于所谓的模拟量子模拟,这种模拟量子模拟直接实现要模拟的系统,并避免通用门方法的开销。可实现系统的类别取决于底层平台的特性。一般来说,量子模拟平台必须可靠且可控性良好。此外,与退相干时间相比,相互作用必须很快。满足这些要求的平台例如超导量子比特和捕获离子。另一种方法是在光镊中使用中性原子。可以通过将原子激发到里德堡态(即具有高主量子数的电子态)并利用里德堡原子之间的强偶极相互作用来使原子相互作用。过去十年的快速发展使得使用这种方法模拟任意二维和三维晶格上的各种自旋哈密顿量成为可能,即使在超出精确数值处理的范围内也是如此。本论文涵盖的研究为量子模拟的实验实现提供了理论支持,为这一进展做出了贡献。本论文的重点有两个方面。首先,我们讨论了里德堡相互作用势的计算及其对实验参数的依赖性。其次,我们利用我们对里德堡相互作用的见解,展示了如何将精确的里德堡原子量子模拟应用于研究各种量子自旋模型。具体来说,我们展示了如何研究不同的拓扑相。后者是与巴黎的 Antoine Browaeys 实验小组密切合作进行的。在一个附带项目中,我们与格拉斯哥的 Andrew Daley 小组和 Gregory Bentsen 合作提出了一项用里德堡原子实现快速扰乱自旋模型的提案。下面,我们概述了本论文的章节。