尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说太大了,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率和在通过模拟电话线连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号,引入了光纤“电话线”(可以传输大量数字信号),大大提高了地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,这引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。
摘要:量子秘密共享是量子加密的重要分支,可以使用量子秘密共享构建安全的多方量子键分配协议。在本文中,我们构建了一个基于受约束(t,n)阈值访问结构的量子秘密共享方案,其中n是参与者的数量,t是参与者和分销商的阈值。来自两个不同组的参与者对GHz状态的两个粒子进行相应的相移操作传递给他们,然后与分销商的T -1参与者可以恢复键,在此过程中,参与者恢复了自己收到的密钥粒子并通过分销商的协作来获得密钥。安全分析表明,该协议可以抵抗直接测量攻击,拦截重传攻击和纠缠测量攻击。与类似的现有协议相比,该协议更加安全,灵活和有效,可以节省更多的量子资源。
尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说过于巨大,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率以及在通过模拟电话线路连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号、引入光纤“电话线”(可以传输大量数字信号)以及大大改善地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,从而引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。
尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说过于巨大,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率以及在通过模拟电话线路连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号、引入光纤“电话线”(可以传输大量数字信号)以及大大改善地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,从而引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。
gigamon扩展了超越简单的数据包经纪功能,并具有深度数据包检查,以带来深度可观察性,从而为第7层提供了更大的上下文。重点是查看飞行中的标准应用程序和协议。这可以在网络中提供广泛的横向可见性。网络中的这个广泛的侧面足迹可以扩展到混合云部署。您看不到您不坐着的地方,并且无法逃避网络点击。由于Gigamon不参与第3层流量流,因此从第2层到第7层具有丰富的可见性功能。第2层MAC地址,DHCP选项,第3层协议标识以及重传/错误,第4层加密和流数据,第7层应用程序识别以及最后的性能仪器。当一个信息在OSI堆栈上下旅行时,大部分信息被丢弃。gigamon深度可观察性可以首次广泛回答“网络上有什么?”
摘要:移动性和低能耗被认为是医疗监测系统 (HMS) 中使用的无线体域传感器网络 (WBASN) 的主要要求。在 HMS 中,使用能量有限的电池供电传感器节点来获取有关身体的重要统计数据。因此,需要节能方案来保持传感器节点的长期稳定连接。空闲监听、过度传输和接收控制消息、数据包冲突和数据包重传以及路径选择不当等活动会消耗大量能量,这可能会导致更多的能量消耗。自适应调度与节能协议的结合可以帮助在适当的时间选择合适的路径,以最大限度地减少控制开销、能耗、数据包冲突和过度空闲监听。本文提出了一种基于区域的节能多路径路由 (REMR) 方法,该方法将整个传感器网络划分为簇,最好有多个候选簇来代表每个簇。簇代表 (CR) 通过各种簇路由数据包。对于路由,需要考虑每条路径的能量需求,并选择能量需求最小的路径。同样,对于数据包路由,需要考虑端到端延迟、更高的吞吐量和数据包投递率。
引言自从 20 世纪 60 年代末 ARPAnet 诞生以来,传统互联网就对服务和社会产生了变革性的影响。现在,随着量子信息和计算技术的进步,一种新型通信网络即量子互联网的研究正在进行中 [1, 2]。这种网络由能够共享纠缠的节点组成,纠缠是一种通过称为量子隐形传态的过程传输量子信息的资源。发送以量子系统状态编码的信息的能力将实现多种新服务,如安全通信、高精度时钟同步、分布式和盲量子计算以及量子遥测。然而,量子互联网的创建需要重新思考和重新设计传统互联网所依赖的网络协议,以支持量子力学的特性和局限性。幸运的是,该领域已经在开展令人兴奋的工作,量子网络堆栈的不同层都取得了进展。在物理层,已在光纤中证明了数十公里距离的纠缠[3, 4]。已提出了一种链路层协议[5],用于在物理连接的量子节点之间提供强大的纠缠生成服务。在网络层,[6–9]讨论了纠缠路由问题,[10]提出了一种传输层的量子重传协议。
无线传感器网络(WSN)在过去几十年中已经显着发展,成为监视和控制各种应用程序的重要组成部分,例如环境传感,医疗保健和工业自动化。传统上,WSN依靠静态路由协议,这些协议不能很好地适应网络条件的变化,从而导致了诸如交通拥堵,能源效率低下和整体网络绩效之类的问题。这些系统使用固定的路由路径进行数据传输,通常会导致网络上的负载分布不平衡,从而降低了传感器的寿命和性能。传统WSN系统的主要缺点是他们无法处理流量或网络条件的动态变化,例如节点故障,能量耗尽或环境破坏。这会导致效率低下的路由,不必要的数据重传和增加功耗。此外,大多数常规的WSN不能很好地支持可扩展性,因此很难随着网络的增长而保持最佳性能。此外,传统的路由方法通常依赖于单个路径,如果路径变得不可用或拥挤,则增加数据丢失的风险。该系统解决的问题是需要一种更适应性和高效的路由机制,该机制可以处理网络中的动态变化,同时确保负载平衡和容错性。这项研究的动机是提高WSN的可靠性,能源效率和可扩展性,尤其是在传统方法无法有效执行的大规模网络的背景下。所提出的系统旨在将软件定义的网络(SDN)与WSN集成,以启用动态负载平衡和多路径路由。SDN允许对路由路径进行集中控制和实时适应,提供提高的灵活性,更好的交通管理和增强的容错性。通过动态调整路线并平衡整个网络的负载,该系统试图克服传统方法的局限性,并确保在各种WSN应用程序中的最佳性能。
5G 是蜂窝网络的第五代技术标准。它有三个主要应用需求,即增强移动宽带 (EMBB)、大规模机器类型通信 (MMTC) 和超可靠低延迟通信 (URLLC)。URLLC 是一项非常具有挑战性的需求,具有严格的可靠性和延迟要求。到 2022 年,它已得到高度规范,5G 供应商将在不久的将来开始实现基本的 URLLC 功能。本论文的动机是找到方法来测量 5G 独立 (SA) 网络在关键 URLLC 性能指标上的表现,分析和可视化这些测量结果,找出某些网络行为的原因,并估计不同的 URLLC 功能在实施时会产生什么样的影响。此外,另一个动机是找到一种方法来检测数据包丢失及其背后的原因,因为数据包丢失会严重损害可靠性,在部署 URLLC 功能之前应将其最小化。为了测量 5G SA 网络的性能,确定了四种不同类型的测试用例,其中生成了 URLLC 类型的网络流量。在 5G 小区的良好覆盖和不良覆盖下进行静态测试,在连接到同一 5G 小区时从良好覆盖移动到不良覆盖进行移动性测试,以及在切换测试中更改 5G 小区。所有测试均在 5G 现场验证环境中完成,包括下行链路和上行链路。对于下行链路,小区内的覆盖和移动性对单向延迟没有显著影响。这主要是因为不需要数据包重新传输,否则会增加延迟。这对于移动 URLLC 用例(例如车对万物通信 (V2X))尤其有前景。上行链路表现要弱得多,主要是因为上行链路资源调度和数据包重传。切换对于下行链路和上行链路都是有问题的,因为小区变化导致延迟短暂但大幅增加。测量中的所有数据包丢失都发生在上行链路传输中,本论文包括一个案例研究,其中导致数据包丢失的不同潜在因素被一致消除。最后,数据包丢失的原因指向用于测试的 5G 芯片组。