这是我们航天工业和国际航天伙伴关系生存所必需的动力。24 年来,国际空间站上的持续载人飞行推动了研究的加速发展,展示了在太空生活和工作所需的条件,并促进了发射业的发展,使低地球轨道更加容易进入。保持这种不间断的存在将使我们能够降低将人类送上火星的风险,促进与国际合作伙伴的合作,维护运输模式,并提高运营技能。此外,这些目标和目的将为利用低地球轨道作为关键技术试验场的活动奠定基础,这些技术对于未来的深空探索至关重要,包括月球、火星及更远的地方。
我们研究抗 - de Seitter(ADS)黑色壳(也称为Ads Black Bubbles)的电磁和重力特性 - 一类量子重力动机的黑洞模拟物,在经典限制中被描述为物质的超级壳壳。我们发现它们的电磁特性与黑洞非常相似。然后,我们讨论这些物体与黑洞可区分的程度,包括黑色壳模型内的内在兴趣,以及作为外来紧凑型物体(ECOS)其他类似努力的指南。我们研究光子环和透镜带特性,与非常大的基线干涉法(VLBI)观测值有关,以及引力波可观测值 - Eikonal极限中的准模式和非静态潮汐壳的静态潮汐壳(与正在进行和即将来临的Gravitation Gravitation Waver toughational Wave观测)相关。
随着人类将目光投向深空探索和长期太空任务,航天器和太空栖息地对人工重力的需求也变得越来越迫切。长时间暴露在微重力环境中会导致一系列生理问题,包括肌肉萎缩、骨密度降低和体液重新分布。这些有害影响对执行数月甚至数年任务的宇航员的健康和福祉构成了重大挑战。本综述探讨了深空栖息地人工重力产生的当前研究,研究了可能实现可持续人工重力环境的挑战、技术和潜在解决方案。我们讨论了离心方法(例如旋转栖息地)和非离心方法(包括电磁场和静电场)。此外,我们还强调了操作和工程限制,以及可能解决这些障碍的未来发展潜力。
我们探讨了公民科学中人类和机器学习之间的双向关系。从理论上讲,该研究借鉴了近端开发区(ZPD)概念,这使我们能够描述人类学习的AI增强,人类对机器学习的增强以及如何设计任务以促进共学习。该研究采用了设计科学方法来探索重力间谍公民科学项目的设计,部署和评估。这些发现突出了共同学习的挑战和机遇,人类和机器都会为彼此的学习和能力做出贡献。这项研究在文献中涉及共同学习的出发点,并开发了一个设计项目的框架,其中人类和机器相互增强了彼此的学习。这项研究通过强调ZPD支持正在进行的志愿者学习,并使机器学习与不断发展的数据保持一致,从而为现有文献做出了贡献。该方法为项目可扩展性,参与者参与和自动化考虑提供了潜在的好处,同时承认教程,社区访问和专家参与支持学习的重要性。
摘要。随着3D打印的使用变得越来越流行,因此出现了在复杂的重力环境甚至低重力环境中打印的需求。为了满足这些反重力3D打印需求,许多个人或措施提出了不同的解决方案。本文介绍了三种抗流式3D打印解决方案,即基于FDM的Mataerial打印机,无锚定选择性激光烧结和磁性悬浮打印。这三种技术适合不同的环境,可以实现不同的目的。例如,Mataerial适合在现有结构中添加结构,因为该打印机不需要移动工件,并且它使用的热塑性材料允许其以任何角度和在任何重力条件下打印。对于无锚定选择性激光烧结,它更适合在工业生产条件下使用。因为这项技术可以使大多数支持结构以及SLS技术的大部分统计,因此其成本较低和更快的生产速度具有很高的竞争力。对于磁性悬浮打印,它的工作温度低,柔性打印,并且可以忽略重力的影响,非常适合在诸如空间之类的综合环境中打印相关设备,以帮助人体空间探索。通过在材料选择和打印方法方面比较这三种反重力打印技术,可以尝试总结三种技术中每种技术的优点和缺点。最终,本文希望确定这三种技术中每种技术的发展前景和适用环境,并在其未来的发展方向上提出猜测和建议。
版权所有,特劳特曼胡椒汉密尔顿·桑德斯有限责任公司。这些记录的材料仅用于教育目的。此播客不是法律建议,也不会建立律师 - 客户关系。本播客中表达的观点和观点仅仅是个人参与者的观点。Troutman Pepper对此播客的内容没有任何明示或暗示的陈述或保证。有关先前案例结果的信息不能保证类似的未来归因。此播客的用户可以保存和使用播客,仅用于个人或其他非商业,教育目的。没有其他用途,包括但不受限制的复制,重新启动或编辑此播客,可以在未经鳟鱼胡椒的事先书面许可的情况下进行。如果您有任何疑问,请通过troutman.com与我们联系。
每个节点•2 x 6240r(24芯2.4 GHz 165W)CPU•192 GB DDR4•10 GBPS以太网•2 x 800GB NVME SSD•HDR 100 Mellanox NIC•3.675 TF峰(68%RMAX)•40 port hdr 200 hdr 200 empe•14.75 tf•14.75 tf(64. 1%)
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
摘要:在本文中,我们在修改后的重力上下文中介绍了狄拉克出生的标量标量场的动态系统分析。我们考虑了修饰重力的多项式形式,使用了两种不同类型的标量,多项式和指数,并找到了一个封闭的方程式动力学系统。我们分析了这种系统的固定点,并评估了该模型中延迟加速度减速的条件。我们注意到这两个模型的相似性,并表明我们的结果与先前关于爱因斯坦重力的研究一致。我们还通过绘制EOS(ω),能量密度(ω)和减速参数(Q)W.R.T。来研究了模型的现象学意义。到e-folt时间,并与现在的值进行比较。我们通过观察动态系统分析在修饰的重力方面有何不同,并介绍我们研究的未来范围,从而结束了本文。
科学技术的进步是继续在低地球轨道开展活动的首要原因,也可以说是最纯粹的原因。NASA 从在低地球轨道微重力环境中运行的时间中学到了很多东西。然而,最近发布的美国国家科学、工程和医学院 2023-2032 年太空生物和物理科学研究十年调查强调了还有许多东西需要了解。NASA 资助基础研究以满足这些十年优先事项,一些科学问题只能通过微重力环境下的实验来回答。低地球轨道通常比将实验送入太空更远的地方更具成本效益。开展这些实验需要一个包括训练有素的研究科学家和研究设施的微重力研究生态系统。