任意分割模型 (SAM) 因提供强大且通用的图像对象分割解决方案而备受关注。然而,在不同场景下对 SAM 进行微调以用于下游分割任务仍然是一个挑战,因为不同场景的不同特征自然需要不同的模型参数空间。大多数现有的微调方法试图通过引入一组新参数来修改 SAM 的原始参数空间,以弥合不同场景之间的差距。与这些工作不同,在本文中,我们提出通过参数空间重构(SAM-PARSER)来有效地对 SAM 进行微调,其在微调过程中引入几乎为零的可训练参数。在 SAM-PARSER 中,我们假设 SAM 的原始参数空间相对完整,因此它的基能够重建新场景的参数空间。我们通过矩阵分解获得基,并通过基的最佳线性组合对系数进行微调以重建适合新场景的参数空间。实验结果表明,SAM-PARSER 在各种场景中表现出卓越的分割性能,同时与当前参数高效的微调方法相比,可训练参数的数量减少了约 290 倍。
域名系统 (DNS) 是互联网基础设施中最重要的组件之一。DNS 依赖于基于委托的架构,其中将名称解析为其 IP 地址需要解析负责这些名称的服务器的名称。与每个区域相关联的名称服务器之间存在的相互依赖关系的递归结构称为依赖关系图。系统管理员的运营决策对 DNS 的质量有着深远的影响。需要合理地制定这些决策,以在系统的可用性、安全性和弹性之间取得平衡。我们利用依赖关系图来识别、检测和分类操作不良气味。我们的方法使用由 DNS 操作模型定义的一致分类法和可重用词汇表,在高抽象级别上处理气味。该方法将用于构建诊断咨询工具,该工具将在域名投入生产之前检测可能降低其稳健性或安全态势的配置更改。
摘要 — 下一代通信技术将通过地面网络与由高空平台站和卫星组成的非地面网络 (NTN) 之间的合作成为可能。此外,随着人类踏上在其他星球上建立新栖息地的漫长道路,NTN 和深空网络 (DSN) 之间的合作将是必要的。在这方面,我们建议使用可重构智能表面 (RIS) 来改善这些网络之间的协调,因为 RIS 完全符合在太空中运行的尺寸、重量和功率限制。提出了一个全面的 RIS 辅助非地面和行星际通信框架,指出了挑战、用例和未解决的问题。此外,根据模拟结果讨论了 RIS 辅助 NTN 在太阳闪烁和卫星阻力等环境影响下的性能。
摘要 — 时变图信号的顶点域和时间域平滑性是可以利用的基本属性,从有限的样本中有效地重构图信号。然而,当信号的频率占用率随时间变化时,现有的方法并不直接适用。此外,虽然例如传感器网络应用可以从有向图模型中受益,但图特征向量的非正交性会对基于谱的信号重构算法提出挑战。在这种情况下,我们在这里考虑具有未知频率支持的 K 稀疏时变信号。通过利用变化图频率支持的平滑性并在有向图上采用移位操作,我们研究基于 Schur 分解的多个变化信号的联合采样,以通过正交频率分量重构每个信号。首先,通过提出两阶段单独联合采样方案来确定多个信号的联合频率支持。基于估计的频率支持,可以使用在单个采样阶段收集的数据恢复每个信号的 GFT 系数。提出了用于顶点集选择和图移位顺序选择的贪婪算法,从而能够对加性噪声进行鲁棒的信号重构。考虑到应用中的信号可能近似为 K 稀疏,我们进一步利用单个和联合采样阶段的样本,并将最优信号重构作为具有自适应频率支持选择的凸优化问题进行研究。所提出的最佳采样和重构算法优于随机网络和传感器网络数据收集中的几种现有方案。
摘要 本文介绍了纯退相干条件下的三元组和纠缠量子比特的有效量子态断层扫描方案。我们实现了通过相位衰减通道发送的开放系统的动态状态重建方法,该方法提出于:Czerwinski 和 Jamiolkowski Open Syst. Inf. Dyn. 23, 1650019 ( 2016 )。在本文中,我们证明在四个不同时刻测量的两个不同可观测量足以重建三元组的初始密度矩阵,其演化由相位衰减通道给出。此外,我们推广了该方法以确定纠缠量子比特的量子断层扫描标准。最后,我们证明了关于纯退相干条件下的三元组量子态断层扫描所需可观测量数量的两个普遍定理。我们相信动态状态重建方案为量子断层扫描带来了进步和新颖性,因为它们利用了海森堡表示并允许在时间域中定义测量。
摘要 - 可恢复的电池可以实时更改其电池底漆,这使它们能够在操作过程中调整电压。这种独特的功能使连接功率转换器在电池直接与其他直流组件或系统的应用中冗余。目前的论文描述了用于高功率应用的可重构电池的104 kWh原型,并得出了计算完整操作区域电池效率的方程式。电池可以将其电压从0 V调整到1200 V,并达到充电240 kW的功率值,并用于排放280 kW。结果以效率图表示,显示了对电压,功率和电荷状态的依赖性。此外,将效率特征与具有固定细胞拓扑和DC-DC转换器的常规电池进行比较。可重新配置的电池可以在更宽的电压范围内运行,并在充电过程中实现更高的效率,最高效率为44.6 kW,在放电过程中可实现46.7 kW。相反,传统系统的性能优于这些阈值。最后,提出的模型可用于优化可重构电池字符串的设计,并为特定的应用程序和目的准确尺寸大小。
光子非厄米系统中的拓扑效应近期引发了一系列非凡的发现,包括非互易激光、拓扑绝缘体激光器和拓扑超材料等等。这些效应虽然在非厄米系统中实现,但都源于其厄米分量。本文,我们通过实验证明了由二维激光阵列中的虚规范场引起的拓扑趋肤效应和边界敏感性,这与任何厄米拓扑效应有着根本的不同,并且是开放系统所固有的。通过选择性地和非对称地向系统中注入增益,我们在芯片上合成了一个虚规范场,它可以根据需要灵活地重新配置。我们不仅证明了非厄米拓扑特征在非线性非平衡系统中保持不变,而且还证明了可以利用它们来实现强度变形的持久相位锁定。我们的工作为具有强大可扩展性的动态可重构片上相干系统奠定了基础,对于构建具有任意强度分布的高亮度源具有吸引力。
摘要 本文介绍了 Triton 联合航空电子安全测试平台,该测试平台支持测试真实飞机电子系统的安全漏洞。由于现代飞机是复杂的系统,因此 Triton 测试平台允许实例化多个系统进行分析,以便观察多个飞机系统的总体行为并确定它们对飞行安全的潜在影响。我们描述了两种激发 Triton 测试平台设计的攻击场景:ACARS 消息欺骗和飞机系统的软件更新过程。该测试平台允许我们分析这两种场景,以确定其预期操作中的对抗性干扰是否会造成危害。本文不描述真实飞机系统中的任何漏洞;相反,它描述了 Triton 测试平台的设计和我们使用它的经验。Triton 测试平台的主要功能之一是能够根据特定实验或分析任务的需要混合模拟、仿真和物理电子系统。物理系统可以与模拟组件或其软件在模拟器中运行的系统交互。为了便于快速重新配置,Triton 还完全通过软件重新配置:组件之间的所有接线都是虚拟的,无需物理接触组件即可进行更改。两所大学使用 Triton 测试平台的原型来评估飞机系统的安全性。
超导量子比特为大规模容错量子计算提供了一种有前途的方法。然而,平面上的量子比特连接通常仅限于几个相邻的量子比特。实现更长距离和更灵活的连接(鉴于纠错码的最新发展,这尤其有吸引力)通常涉及复杂的多层封装和外部布线,这需要大量资源并且可能造成保真度限制。在这里,我们提出并实现了一种高速片上量子处理器,它支持可重构的全对全耦合,具有较大的开关比。我们在四节点量子处理器中实现了该设计,该处理器采用模块化设计,包括一个与两个单独的量子比特承载基板耦合的布线基板,每个基板包括两个单量子比特节点。我们使用该设备演示所有量子比特对的可重构控制 Z 门,基准平均保真度为 96 . 00% 0 . 08%,最佳保真度为 97 . 14% 0 . 07% ,主要受量子比特失相限制。我们还生成分布在各个模块上的多量子比特纠缠,显示 GHZ-3 和 GHZ-4 状态的保真度分别为 88 . 15% 0 . 24% 和 75 . 18% 0 . 11% 。这种方法有望有效扩展到更大规模的量子电路,并为实现受益于增强的量子比特连接性的量子算法和纠错方案提供了途径。