摘要:随着立方体卫星执行复杂和先进任务的能力不断提高,它们正被考虑用于诸如星座之类的任务,这些任务需要很高的开发效率。从卫星接口的角度来看,通过实施灵活的模块化结构平台,可以最大限度地提高生产率,从而在集成和测试阶段轻松实现可重构性。因此,立方体卫星的结构设计在促进卫星集成过程中起着至关重要的作用。在大多数情况下,在主负载支撑结构和内部卫星子组件之间实施的机械接口通过增加或减少复杂性来影响卫星集成的速度和效率。大多数立方体卫星结构设计使用堆叠技术,使用堆叠杆/螺钉将 PCB 安装到主结构上。因此,内部子系统是相互连接的。观察到这种传统的接口方法增加了结构部件的数量,同时增加了集成过程中的复杂性。在这项研究中,基于插槽概念开发了灵活的 3U 和 1U 立方体卫星平台。这种创新的安装设计提供了一种将 PCB 安装到插槽中的简单方法。评估并验证了该概念在批量生产应用中的可行性。进行了计数和复杂性分析,以评估所提出的设计与传统类型的结构接口方法。评估表明,这一新概念显著提高了批量生产过程的效率。
建立一个智能,灵活和数字化的能源系统,该系统积极管理需求的规模和性质,将使更有效,安全和较低的成本系统能够。自2021年7月的智能系统和灵活性计划6和能源数字化策略7出版以来,政府,OFGEM和行业一直在努力消除障碍,促进变革并刺激创新,以提供智能和灵活的能源系统。政府已提出进一步的建议,这些建议是建立在这些行动的基础上,并在我们的整个工作中嵌入了智能和灵活性原则,以在2035年之前实现脱碳,支持能源独立性并在2050年至少实现净零成本。这对于整合大量的低碳功率,热量和运输以及到2050年每年最高100亿英镑至关重要。
摘要。由于全球海上风电装机容量快速增长,单个风电场的规模也在不断扩大。这对预测能源产量的模型提出了挑战。例如,当前一代尾流模型大多是在现有规模小得多的风电场上校准的。这项工作利用大气大涡模拟分析了未来多千兆瓦风电场的年能源产量和尾流损失。为此,针对一系列假设的 4 GW 海上风电场场景模拟了 1 年的实际天气。这些场景在应用的涡轮机类型、安装容量密度和布局方面有所不同。结果表明,当单个涡轮机的额定功率较大时,在总安装容量保持不变的情况下,生产数量会显著增加。即使对于额定功率相似但功率曲线略有不同的涡轮机类型,也发现生产存在显著差异。虽然风速被确定为决定气动损失的最主要因素,但已确定大气稳定性和边界层高度的明显影响。通过分析第一排涡轮机的损耗,全球年平均阻塞效应估计在 2% 到 3% 之间,但在稳定分层条件和风速约为 8 ms − 1 时,阻塞效应可达到 10% 以上。本研究使用高保真建模技术,深入了解未来多千兆瓦风电场在全年真实天气条件下的性能。
摘要:随着纳米级半导体器件尺寸的不断缩小,从复杂的物理方程中获取表面势的解析解变得越来越困难,而这正是 MOSFET 紧凑模型的根本目的。在本文中,我们提出了一个通用框架,利用深度神经网络的通用近似能力,自动推导 MOSFET 表面势的解析解。我们的框架结合了物理关系神经网络 (PRNN),可以从通用数值模拟器并行学习处理复杂的数学物理方程,然后将模拟数据中的“知识”灌输到神经网络,从而生成器件参数和表面势之间的精确闭式映射。本质上,表面势能够反映二维 (2D) 泊松方程的数值解,超越了传统一维泊松方程解的限制,从而更好地说明缩放器件的物理特性。我们在推导 MOSFET 的解析表面电位以及将导出的电位函数应用于 130 nm MOSFET 紧凑模型的构建和电路模拟方面取得了令人鼓舞的结果。这种高效框架能够准确预测器件性能,展现了其在器件优化和电路设计方面的潜力。
1 Whiffle, Molengraaffsingel 8, 2629 JD 代尔夫特,荷兰 2 代尔夫特理工大学,工程系统与服务系,Jaffalaan 5, 2628 BX 代尔夫特,荷兰 3 代尔夫特理工大学,地球科学与遥感系,Stevinweg 1, 2628 CN 代尔夫特,荷兰
锂离子电池(LiBs 1 )被广泛应用于各个领域,但其原材料依赖于稀土金属,而稀土金属的产地在世界各地分布不均。近年来,电动汽车销量的增长和乌克兰危机导致锂等锂离子电池主要原材料的价格飞涨,降低材料采购风险在下一代电池的开发中显得至关重要。自 1980 年代以来,钠离子电池(以下称为 NiBs 2 )的研发就一直在进行,但由于 NiB 在能量密度 3 和其他性能特性方面不如 LiB,因此并未得到广泛应用。但是,随着上述市场环境的变化,NiB 作为一种有前途的下一代电池候选材料开始受到关注,因为其主要原材料钠在地壳中的储量是锂的 1,000 倍,而且不会像锂那样在特定国家和地区分布不均。 BNEF 4 在 2021 年底发布的《全球储能展望》中指出,到 2030 年,NiB 可能会发挥重要作用。
尽管包括本文作者在内的许多人都公开表示,正在开发的小型运载火箭数量是不可持续的,但投资者的资金仍在继续流入这一细分市场。每年都会有数轮数百万美元的融资公告。即使是全球新冠疫情带来的挑战也没有减缓这一趋势。2015 年,我们在 AIAA/USU 小型卫星会议上首次展示了这项调查,并确定了 20 辆正在开发的小型运载火箭。到 2022 年中期,该类别中有 11 辆运载火箭投入运营,47 辆正在开发中,另外 47 辆是潜在的新进入者,但目前还没有足够的信息。其中许多是 2021 年和 2022 年首次出现在这项年度调查中。虽然最初,发展受到政府对太空的新投资的刺激,例如我们在英国看到的情况,但即使没有政府投资的承诺,细分市场仍在继续增长。在本文中,我们概述了目前正在开发的小型运载火箭。我们会比较它们的能力、既定的任务目标、成本和资金来源以及公开的测试进度。我们还回顾了自我们首次开始撰写本报告以来退出的许多参赛者。自上次提交本文以来,又有一个系统投入运行,并且有几个系统已经达到了稳定的发射节奏。
背景。日冕环是太阳高层大气的基本构成要素,在极紫外和 X 射线中可见。了解日冕环如何产生能量、构造和演化是理解恒星日冕的关键。目的。我们在此研究光球磁对流如何产生加热日冕环的能量,并将其传输到高层大气中,以及日冕磁环的内部结构如何形成。方法。在 3D 磁流体动力学模型中,我们使用 MURaM 代码研究了一个孤立的日冕环,其两个足点都位于对流区内的浅层中。为了解决其内部结构,我们将计算域限制为一个矩形框,其中包含一个日冕环作为拉直的磁通量管。考虑了场对准热传导、光球层和色球层的灰辐射传输以及日冕中的光学薄辐射损失。足点被允许与周围的颗粒物自洽地相互作用。结果。环被坡印廷通量加热,该通量是通过光球中单个磁场浓度的小尺度运动自洽产生的。由于足点运动,大气上层形成了湍流。我们几乎看不到来自给定足点的不同光球浓度的磁通量管大规模编织加热的迹象。合成发射,就像大气成像组件或 X 射线望远镜所观察到的那样,揭示了响应加热事件而形成的瞬态亮线。总体而言,我们的模型粗略地再现了在日冕环(子结构)内观察到的等离子体的性质和演化。结论。利用这个模型,我们可以建立一个连贯的图像,展示加热太阳表面附近高层大气的能量通量是如何产生的,以及这个过程是如何驱动和控制日冕环的加热和动态的。
量子测量最终是一个物理过程,这是由于测量系统与测量设备之间的相互作用所致。考虑在热力学环境中测量的物理过程自然提出了以下问题:如何解释工作和热量?在本文中,我们为可观察到的任意离散的测量方案的测量过程建模。在这里,要测量的系统首先与设备耦合,随后相对于可观察到的指针,因此对化合物系统进行对象,从而产生确定的测量结果。因此,由于单一耦合,该工作可以解释为复合系统内部能量的变化。通过热力学的第一定律,热量是由于指针对象的后续内部能量的随后变化。我们认为,只有当指针可观察到与哈密顿量的通勤情况并表明这种交换性意味着热量的不确定性一定是经典的,该设备才是测量结果的稳定记录。
摘要 人类跑步的特点是身体与地面之间类似弹簧的相互作用,这种相互作用是由弹性肌腱实现的,弹性肌腱可以储存机械能并促进肌肉的运行条件,从而最大限度地降低代谢成本。通过实验评估两块对跑步很重要的肌肉——比目鱼肌和股外侧肌的运行条件,我们研究了肌肉做功和肌肉力量产生的生理机制。我们发现比目鱼肌在整个站立阶段不断缩短,在被认为最适合做功的条件下充当做功发生器:高力-长度潜力和高焓效率。股外侧肌促进了肌腱的能量储存,并几乎等长地收缩到接近最佳长度,从而产生了高力-长度-速度潜力,有利于经济地产生力量。这两块肌肉的有利运行条件是肌腱和肌腱单元的有效长度和速度解耦的结果,这主要是由于肌腱的柔顺性,在比目鱼肌中,肌腱旋转也起着一定作用。