中心,Pune-411018摘要Ayurveda一种古老的医学方法,从数千年来开始实践,以在身心,身体和精神之间取得平衡。自18世纪以来,现代医学就一直在实践。由于两种治疗路径对疾病的病理生理联系及其治疗具有不同的方法,因此可以采用人工智能等常见工具来改善两种治疗途径的解释。机构正在努力开发各种人工智能工具,以改善阿育吠陀医学的客观性,并创建纪律模型,以更好地与其他医学系统整合,因为对印度草药医学的分子理解对于促进循证基于循证的阿育吠陀至关重要。人工智能对诊断,个性化治疗,患者结果,研究,行政需求,患者数据等领域的医疗保健业务有重大影响。许多机构正在使用人工智能数字化旧的阿育吠陀文本。为了将所有数据集成到一个平台中,并为阿育吠陀从业者提供各种个性化的治疗替代方案,这取决于在印度的阿育吠陀的位置不同。人工智能的观察,解释和预测方法可能与阿育吠陀医生使用的培训和专业知识所使用的方法不同。关键字:Ayurveda,AI(人工智能),医疗保健。结果和结论:本文强调了人工智能如何在阿育吠陀和医疗保健系统的不同部门中受益。目的:目的是探索AI在阿育吠陀数据来源领域中的作用:数据是从生物技术的各种网站中收集的,Pub-Med,National Science,National Science,National Medicine,Ayurveda书籍,Ayurveda书籍与Ayurved ke Mulbhut Sidhant和以前的Evalice noce and Insport and Insport and Election soperion和其他相关信息有关。评论方法:所有已发表的文学作品,博客和书籍的评论是通过对比和评估过去和现在作家的各种含义和思想来进行的。
摘要目标/目标:在本综述中,尝试评估人工智能在阿育吠陀草药和药物发现和发展中的优势和局限性。材料和方法:进行了全面的文献搜索,以确定有关AI和阿育吠陀整合的相关研究和文章。搜索包括PubMed,Google Scholar和相关期刊等数据库。分析了收集的数据,以介绍该主题的全面概述。讨论:AI整合到阿育吠陀药理学中可以提高药物效应的预测建模,并支持个性化治疗计划。在药品中,AI可以优化配方并改善质量控制。在药物学中,AI有助于准确的植物鉴定和植物化学分析。AI驱动的药物发现可以鉴定多草药配方中的新化合物和协同作用。此外,AI可以通过块链和光谱分析来确保药物真实性,从而增强了阿育吠陀产品的纯度和安全性。结论:AI有可能通过提高准确性,效率和个性化来彻底改变阿育吠陀的德拉维亚部门。这种整合标志着对传统医学的技术复杂方法的重大进步,承诺在全球范围内更好地接受阿育吠陀。
今年的会议主题数量有所减少,目的是使会议更加广泛、更具包容性。我们还旨在扩大参与范围,特别是来自较不发达国家的学生和早期职业科学家,以及来自代表性不足的机构和团体的美国学生。事实上,扩大科学参与也是周三 Tuba Özkan-Haller 全体会议的主题。与往年一样,会议为早期职业科学家准备了一个充满活力的计划,有机会与导师配对、与全体会议发言人见面,以及各种旨在促进专业发展的研讨会。今年,我们很荣幸地欢迎一大批 K-12 教育工作者参加会议。特别是,K-8 教师将于周二出席,而 9-12 教师将于周四出席。请和我一起欢迎这些教育工作者以及所有首次参加 Goldschmidt 会议的参与者。
•OCT1(例如Verapamil)的抑制剂可能会降低功效。•OCT1的诱导剂(例如利福平)可能会增加二甲双胍的胃肠道吸收和疗效•OCT2的抑制剂(例如Cimetidine,dolutegravir,dolutegravir,ranolapaime,trimethoprime,trimethoprime,vandetanib,vandetanib,vandetanib,vandetanib,isavuconazole)可能会降低肾脏消除的肾素消除,从而降低了一个培养基的启发素,从而增加了一项高成员。•OCT1和OCT2的抑制剂(例如Crizotinib,Olaparib)可能会改变二甲双胍的功效和肾脏消除。因此,建议您谨慎,特别是在肾功能障碍患者中,当这些药物与二甲双胍共同给药时,随着二甲双胍血浆浓度可能会增加。如果需要,可以将二甲双胍的剂量调节视为OCT抑制剂/诱导剂可能会改变二甲双胍的功效。
摘要:格约化算法(例如 BKZ(Block-Korkine-Zolotarev))在评估基于格的密码学的安全性方面起着核心作用。BKZ 中用于查找投影子格中最短向量的子程序可以用枚举算法实例化。枚举过程可以看作是在某些枚举树上的深度优先搜索,枚举树的节点表示系数的部分分配,对应于格点,即格基与系数的线性组合。这项工作基于 Montanaro 的量子树回溯算法,对量子格枚举的成本进行了具体的分析。更准确地说,我们在量子电路模型中给出了具体的实现。我们还展示了如何通过并行化组件来优化电路深度。基于设计的电路,我们讨论了格枚举所需的具体量子资源估计。
量子场是物理世界的基本组成部分,它描述所有能量尺度上的物质量子多体系统以及电磁辐射和引力辐射。量子场工程实现了前所未有的测量灵敏度,典型案例是利用压缩光将激光干涉引力波天文台 (LIGO) 的本底噪声降低到散粒噪声极限以下 [1]。在连续变量 (CV) 量子场(又称量子模(代替离散变量 (DV) 量子位))中对量子信息进行编码,已经实现了数百万个量子模上的多体纠缠。这种规模在任何量子位架构中都是无与伦比的,它为量子计算、量子通信和量子传感定义了新的视野和范式。基于量子模式的纳米光子集成设备有可能超越基于量子比特的噪声中型量子 (NISQ) [ 2 ] 计算设备的性能,从而定义未来的量子技术。量子模式的自然实现是使用量子光,这也适用于传感 [ 3 – 6 ] 和通信。
生物质是指用于生产为生物能源的能量的有机材料。生物量主要以工业和家庭用途的生物或近期生存植物以及生物废物的形式发现。生物质的能量转化过程包括热转化,化学转化,生化转化和电化学转化。地热电厂通过在地下地下挖掘蒸汽或热水库来工作,并使用热量来驱动发电机。水电能是一种能源形式,可以利用运动中的水的力量,例如流过瀑布以发电的水。水轮机是一种旋转机,将水的动能和势能转化为机械工作。水力发电厂的转化效率主要取决于所使用的水轮机的类型,对于大型装置而言,高达95%。生物质量资源
Bloczincir是一本不变的数字录音簿,在由妥协算法管理的集中式网络上工作。Bloczincirde用户用作密码数字加密钱包中生产的钱包开关和钱包地址的个人标识符,而不是真实的身份信息。数字加密钱包是与块分开开发的应用程序。但是,没有它们,就不可能与Blockzincir进行交互,例如转移操作的实现和智能合约应用程序的操作,因为没有什么代表块状用户。今天,在数字加密钱包应用中,椭圆曲线数字签名算法(ECDSA)用于开关生产过程。该算法的安全性是基于椭圆曲线上离散对数问题的难度。在1994年,在多项式存在下,在存在量子计算机的情况下,可以在存在量子计算机的情况下解决由shor和清晰的加密系统所暗示的算法。这意味着无法确保使用ECDA创建的加密钱包的安全性(例如在存在量子计算机存在的所有系统)无法确保。量子资金RAI在2016年召集,因为需要标准化密码系统。在此呼叫的范围内,选择基于笼子的晶体二利锂和猎鹰算法作为数字签名标准。在这项研究中,为比特币和Ethe Reum Blocks提供了在加密钱包开关生产阶段中使用晶体 - 二硫硫哲数字签名算法的,用于Quantum Safe Safe数字加密钱包,并使用Rust Programming语言执行这些应用。指示了量子后为经典和后量词开发的钱包应用程序钱包信息的平均创建时间。此外,还指出了在研究范围内开发的数字加密钱包应用程序的处理和验证过程的平均实现周期,这些应用程序通过创建经典和后量子块链原型。