碳点(CDS)是一类低成本碳纳米材料的通用名称,最初在2004年报告,1个具有平均粒径低于10 nm的光致发光(PL)特性。2,由于其易于且廉价的合成,低毒性,6个高(水性)溶解度,光电特性,可轻松的修饰和稳定性,这种碳质材料对从生物成像到传感器,光电子的许多应用都具有吸引力,其含量为3-6。7当前生产CD的合成方法包括自上而下和自下而上的方法,这些方法通常提供各种大小的聚集石墨烯样层和较大的结构多样性,包括SP 2 / SP 3碳网络和以不同比率的氧气富官能组。结果,根据合成,CD的光致发光特性在量子产率上大大变化,从<1%到95%。在过去的十年中,已经报道了光激发波长依赖性和独立发射。8–11 CD的实验和理论研究表明,光致发光主要源于涉及SP 2碳的杂交轨道的π-π*过渡。
为高性能选择应用设计二维卤化物钙钛矿需要深入了解控制其兴奋性行为的结构 - 陶艺关系。然而,尚未开发出由A位点和间隔阳离子进行修饰的内部和层间结构的设计。在这里,我们使用压力来协同调整内部和层间结构,并发现结构调制,从而改善了光电子的性能。在施加的压力下,(Ba)2(ga)Pb 2 I 7表现出72倍的光致发光和光电导率增长10倍。基于观察到的结构变化,我们引入了一个结构描述符χ,该结构描述χ描述了内部和间层间特性,并在χ和光致发光量子量产率之间建立了一般的定量关系:较小的χ与最小化的捕获激子的激子以及来自自由激子的最小生效发射。根据此原理构建,我们设计了一个钙钛矿(CMA)2(FA)Pb 2 I 7,该7 7具有较小的χ和令人印象深刻的光致发光量子产率为59.3%。
量子点(QD),半导体纳米晶体的大小为1 - 100 nm,已成为生物成像中的革命性工具,可窥视细胞和分子水平的生物生物的复杂工作。1,2生物成像中QD的采用是由其无与伦比的光学特性驱动的,包括尺寸依赖性的效,特殊的光稳定性和高量子产率,这些量子集体超过了传统的uorescent染料和增强分辨率,稳定性,稳定性,以及在成像应用中的特定城市的能力。3,4与传统的染料相比,QD的特殊光稳定性尤其显着,这些染料易于光漂白。This allows for prolonged imaging sessions without signal degra- dation, ensuring consistent and high-quality images.Addi- tionally, QDs reduce the risk of phototoxicity to biological samples, making them safer for long-term observation.另外,QD的表面可以通过生物偶联技术通过各种生物分子(例如抗体,肽或核酸)功能化。这可以实现具有高特定城市和多功能性的生物结构或过程的特定特定的成像,这特别是
摘要:过氧化氢(H 2 O 2 )是体内产生的一种重要产物,与许多病理生理过程有关,而葡萄糖代谢紊乱可导致生物体许多致命的疾病。因此,传感H 2 O 2 和葡萄糖在疾病诊断和治疗中具有重要意义。荧光碳点(CD)是一类新的H 2 O 2 和葡萄糖纳米探针。然而,基于CD的传感器通常基于其荧光响应,而荧光响应容易受到自发荧光干扰的影响。本研究采用一锅溶剂热法合成了高效的荧光碳点,在草酸二甲酯和 H 2 O 2 溶液中碳点呈现明亮而持久的深红色(DR)化学发光(CL),其化学发光量子产率为(8.22 ± 0.30)× 10 −3,是迄今为止报道的用于化学分析的纳米材料中最高值之一。利用碳点作为化学发光纳米探针,实现了对 H 2 O 2 的灵敏传感,检测限为 11.7 μ M,并进一步用于葡萄糖检测,检测限为
二维分子组装体越来越受到人们的关注,而这种结构很难仅依靠自发分子组装来构建。本文我们展示了使用三足三蝶烯超分子支架实现的并苯发色团的二维组装体,这种支架已被证明具有强大的二维分子和聚合物基序组装能力。我们设计了夹在两个三足三蝶烯单元之间的并五苯和蒽衍生物。这些化合物组装成预期的二维结构,并五苯发色团既有足够的重叠以引起单线态裂变,又有足够的构象变化空间以促进三线态对解离成两个自由三线态,而蒽类似物则并非如此。详细的光谱分析表明,组装体中的并五苯发色团以高量子产率(ΦSF=88±5%)发生单线态裂变,产生三线态对,从中可得到自由三线态
图片标题 图 S1 C9 和 C12 变体的 EP-PCR 文库。 图 S2 对 mCherry 家族进行诱变努力以实现寿命进化的总结。 图 S3 空间远距离替换对光物理特性的作用。 图 S4 寿命和酵母细胞共同进化轨迹。 图 S5 哺乳动物细胞的细胞亮度。 图 S6 大肠杆菌的光漂白趋势。 图 S7 比较大肠杆菌在激发速率标准化条件下的光稳定性。 图 S8 归一化的吸收和发射光谱。 图 S9 变体的荧光各向异性衰减和旋转时间常数(τ r)。 图 S10 变体的荧光衰减和平均寿命(τ)。 图 S11 变体的荧光量子产率()。 图 S12 mCherry 变体的辐射速率常数分析。图 S13 总非辐射速率常数与能隙的拟合。图 S14 相关可观测量的示意图。图 S15 波数尺度上的吸光度和荧光光谱。图 S16 方程 S2 中的分子和分母函数。补充数据表列表
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
混合壁cl/br钙钛矿提供了在蓝色区域中发射最便利的方法。然而,由于这些系统通常遭受严重的诱捕非辐射性损失,因此薄膜的光发光量子产率(PLQY)相对较低(<40%),这是其最终的LED效率。[19-23]此外,由于钙钛矿材料的离子性质,在外部刺激(电场,光辐射和热加热)下,通常在混合卤化物钙钛矿中观察到卤化物离子的迁移,从而导致偏移发射光谱和材料分解。[14,15,24]此外,卤离子离子的迁移可以实现相位分离,这增加了高性能和操作稳定的混合甲基甲虫LED的另一个障碍。[25–30]考虑到这一点,已经用混合壁蓝的钙钛矿LED进行了分解。Zhong和同事成功地制定了一种双重配体策略,以精确控制有效的蓝色混合甲基钙钛矿LED的尺寸,在473 nm的发射波长下,EQE为8.8%。[31]高
摘要:照明是人类的基本需求,因此寻找具有高效率和宽带白光发射的照明源十分必要。零维 (0D) 金属卤化物化合物是有希望的候选化合物,一些无铅含锑化合物表现出双峰白光发射。然而,它们的起源仍不清楚。为了解决这个问题,我们设计并制备了一类新的 0D 金属卤化物化合物,由 [M(18-冠-6)] + (M = NH 4 , Rb) 和 SbX 5 2 − (X = Cl, Br) 单元组成。我们发现 0D 化合物的发射曲线与 18-冠-6 醚的发射曲线不同且分离良好,不包括几篇报道中提出的配体内电荷转移机制。飞秒瞬态吸收数据和光物理性质的成分依赖性表明,双峰白光发射是由与金属卤化物耦合的自俘获激子的单重态和三重态(1 STE 和 3 STE)引起的。这些 0D 化合物也是非常高效的发射器,白光光致发光量子产率高达 54%。■ 简介照明是人类的基本需求,占全球电力消耗的约 20%。1
