•世界是量子,我们很幸运,任何适合古典计算机的东西 - 大型量子计算机可以在HEP中处理计算,否则无法访问 - 这打开了新的边界并扩展了LHC,LIGO,LIGO,EIC和DUNE
V Veitch、SAH Mousavian、D. Gottesman 和 J Emerson。稳定器量子计算的资源理论。《新物理学杂志》,16(1):013009,2014 年
量子信息处理正在从纯粹的学术学科稳步发展,转向整个科学和行业的应用。从基于实验室的,概念验证实验过渡到量子信息处理硬件的稳健,集成的实现是此过程的重要一步。但是,传统实验室设置的性质并不容易扩大系统大小或允许在实验室级环境之外的应用。这种过渡需要克服工程和集成方面的挑战,而无需牺牲实验室实施的最先进绩效。在这里,我们提出了一个19英寸的机架量子计算演示器,基于线性保罗陷阱中的40个CA +光学Qubits,以应对许多此类挑战。我们概述了机械,光学和电气子系统。此外,我们描述了量子计算堆栈的自动化和远程访问组件。我们通过描述与量子计算相关的表征测量结果,包括站点分辨的单量相互作用,以及通过Mølmer-Sørensen相互作用通过两种不同的地址方法提供的Mølmer-Sørensen相互作用进行纠缠。使用此设置,我们生产最大的纠缠的Greenberger-Horne-Zeilinger状态,最多24个离子,而无需使用后选择或误差缓解技术;与公认的常规实验室设置相提并论。
本文档是仅用于客户业务目的的真实电子证书。允许使用电子证书的印刷版本,并将其视为副本。本公司由SGS一般条件的认证服务条件下发行。 SGS。关注其中包含的责任,赔偿和管辖权条款的限制。本文档受版权保护,任何未经授权的更改,伪造或伪造本文档的外观都是非法的。第1 /2页< / div>
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
足以建立生化途径的功能网络(经典的例子是糖酵解途径和克雷布斯循环),从而使人们对分子函数的理解可能被视为分子事件的何种词素 - next静态图片。仍然,只有详细的定量物理模拟(与详细的实验具有较高的空间和时间分辨率),将允许高度置信地提取这种图片。经典的分子动力学模拟提供有效的模型,并且可以基于量子力学进行严格的模型(从技术上讲,这是通过Born-Oppenheimer近似近似,该近似是电子和核运动,然后将后者鉴定为经典动力学中的原子运动)。不幸的是,对量子机械方程的更详细的模拟非常困难,只有少数原子才有可能。但是,如果我们要通过当前的硬件和算法开发所推动的量子计算来推进分子模拟,[9-13]我们可能想知道生物分子模拟在多大程度上会从多大程度上受益于这种发展,以及量子计算是否会成为计算量子分子生物学的关键。[15–18]提到的是,问题是,量子计算的新兴分支是否最终可以比传统方法带来重大进步。换句话说,反应虽然正在进行深入的搜索以对生物学功能的量子作用进行深入的搜索,但[19-22]最重要的量子效应首先是植根于生物分子的电子结构,在较小程度上,在其量子核运动中(例如,提高到隧道和动力学同位素效应)。分子的电子结构确实是定量理论描述和通过反应能量和通过Born-Oppenheimer势能表面进行化学反应的定量理论描述和预测的关键(PES;见图1)。