我们在低温下研究了玻色粒量子东模型的动力学特性。我们表明,相应的自旋-1/2量子东模型的幼稚概括没有类似的慢速动力学特性。特别是,与自旋案例相反,骨基底态被证明不是本地化的。我们通过引入排斥相互作用项来恢复本地化。该模型的骨气性使我们能够建立多体局部状态的丰富家族,包括连贯,挤压和猫州。我们通过引入一组满足玻色子换向关系的超级体验创造 - 宣传操作系统来形式化这一发现,并在对真空作用时,会产生刺激性,这些激发被指数定位于某个lattice的某个地点。鉴于模型的约束性质,这些状态长期保留其初始条件的记忆。即使在存在耗散的情况下,我们也表明,量子信息仍位于与系统参数可调节的变质时间内。我们提出了基于最先进的超导电路的Bosonic Quantum East模型的实现,该电路可在不久的将来使用,以探索现代平台中动力学约束模型的动态性能。
•FIPS 203草案,基于模块的键盘封装机制(ML-KEM)•FIPS 204草案,基于模块的基于模块的数字签名标准(ML-DSA)•DRAFT FIPS FIPS 205,无状态Hash的数字签名标准(SLH-DSA)(SLH-DSA)
一般信息问:什么是量子计算机,与我们今天使用的计算机有何不同?A:原则上,量子计算机可以比经典计算机更快地执行某些数学算法。代替当今计算机使用的普通位,量子计算机使用的是“量子”,这些量子根据量子力学定律行为和相互作用。这种基于量子物理的行为将使足够大的量子计算机能够执行特定的数学计算,这些计算对于任何常规计算机都是不可行的。问:什么是“密码相关的量子计算机”(CRQC)?A:已经建立了量子计算机的小型实验室规模示例。还提出了一些可以解决某些类型的计算的较大系统,但可能不适合分析加密算法。CRQC用于特异性描述能够实际攻击现实世界加密系统的量子计算机,而这些系统将不可避免地使用普通计算机攻击。问:如果开发CRQC,威胁是什么?a:如果可实现的话,CRQC将能够破坏用于不对称密钥交换和数字签名的广泛部署的公共密钥算法。国家安全系统(NSS)(携带分类或其他敏感的军事或情报信息的系统)使用公共密钥密码学作为保护国家安全信息的机密性,完整性和真实性的关键组成部分。问:我可以使用预共享密钥来减轻量子威胁吗?没有有效的缓解,对量子计算机的对抗使用的影响可能会毁灭NSS和我们的国家,尤其是在需要保护数十年的情况下。A:许多商业协议允许预共享的关键选项,以减轻量子威胁,有些则允许在同一谈判中结合预共享和不对称键。但是,这个问题可能很复杂。希望探索此选项的客户应与NSA联系或遵循商业解决方案提供的分类计划(CSFC)计划的指南。问:什么是“量子抗性”或“量子后”加密术?a:抗量子,量子安全和量词后加密术都是用于描述以标准加密/解密设备运行的加密算法的术语,专家广泛认识到具有经典和量子计算机的隐式分析攻击。尽管使用经典计算的加密分析数十年来一直是引起人们兴趣的主题,但涉及(潜在的)量子计算机仍然相对较新的密码分析的艺术和科学。算法被认为是针对对手安全的,该对手可能会使用“ Quantum抗性”或“量子安全”一词来提及某些crqc。通常,任何“抗量子”或“量子安全”标准都将与所有设想和理解的量子计算能力相对安全。 “ Quantum”是一个中性术语,通常用来简单地传达这些算法是设计了量子威胁的。算法被认为是针对对手安全的,该对手可能会使用“ Quantum抗性”或“量子安全”一词来提及某些crqc。通常,任何“抗量子”或“量子安全”标准都将与所有设想和理解的量子计算能力相对安全。“ Quantum”是一个中性术语,通常用来简单地传达这些算法是设计了量子威胁的。请注意,量词后并不意味着这些算法仅在构建CRQC后才用于使用。Q:量子计算机会影响非公共密钥(即对称)算法吗?a:该领域的专家普遍接受量子计算技术在攻击对称算法方面的有效性要比针对广泛使用的公共密钥算法的效率要低得多。尽管公共密钥密码学需要更改基本设计,但对称算法被认为是安全的,只要使用足够大的钥匙尺寸即可。即使开发了CRQC,也选择了商业国家安全算法(CNSA)套件的对称密钥算法。
加密算法是数学函数,通常使用称为保护信息的键的变量来转换数据。这些关键变量的保护对于受保护数据的持续安全性至关重要。在对称加密算法的情况下,发起者和受密码受保护信息的接收者都使用了相同的密钥。对称键必须保持秘密才能保持机密性;拥有密钥的任何人都可以恢复未受保护的数据。不对称算法要求发起者使用一个密钥和收件人使用不同但相关的键。必须将这些不对称键之一(私钥)保密,但是可以将另一个密钥(公共密钥)公开而不会降低加密过程的安全性。这些不对称算法通常称为公钥算法。
•IAD将在不太遥远的未来开始过渡到抗量子抗算法的过渡•[…]•对于尚未过渡到Suite B椭圆曲线算法的那些合作伙伴和供应商,我们建议不要为此做出重大的支出,而是为了为即将到来的量子抗性量
这有时称为风险登记册,是已确定的每种风险的全面,组织良好的清单,以及为了降低或管理风险所采取的任何措施。风险评估还应确定应利用较高的价值和/或更高的风险资产,这些资产应利用量子修复。企业在识别,评估和事先进行补救工作以保护其数据免受密码分析违规和妥协的措施。就像Y2K的行动呼吁一样,Y2Q(Quantum年)所需的更改在业务基础设施的结构上很深。跨业务流程替换加密方法是一项复杂的努力,需要一致的技术和变革性运动。在这个转折点之前,企业必须立即开始确保对量子处理带来的威胁有抵抗力。
我们在这里研究使用量子操作在Quantum网络上执行纯状态的条件,这些量子操作可以通过非零的概率,随机局部操作和经典通信(SLOCC)操作成功。在他们的2010年开创性工作中,Kobayashi等人。展示了如何将任何经典网络编码协议转换为量子网络编码协议。但是,无论是否存在量子网络编码协议的存在是否可能存在经典的存在。通过此问题提出的动作,我们表征了经典和量子网络的非零概率可实现的一组分配任务。我们开发了一个正式的ISM,该ISM包括将分配任务求解到C或r +中张量的分解来构成两种类型的分配协议。使用这种情况,我们研究了两种类型的分布方案之间的等价和差异,它们在它们之间表现出了几种元素和基本关系,以及收敛和差异的具体示例。我们对先前剩下的问题的负面回答:在量子设置中可以实现某些任务,而在经典设置中则不能实现。我们认为,这种形式主义是研究执行多个分布任务的量子网络能力程度的有用工具。
我们提炼魔术状态以完成大规模量子计算所需的通用易耐故障逻辑门。通过编码更好的质量输入状态为我们的蒸馏过程,我们可以降低产生魔术状态的可观资源成本。我们在一系列超导量子台上演示了两个Qubit Input魔术状态的错误抑制编码方案,该方案称为CZ状态。使用一组完整的投影逻辑Pauli测量值,这些测量也容忍了单电路误差,我们提出了一个电路,该电路证明了具有内在的魔术状态(1。87±0。16)×10-2。此外,我们方案的产量随着使用自适应电路元件的使用而增加,这些元件是在中路测量结果中实时调节的。我们发现我们的结果与实验的变化是一致的,包括我们仅使用序列后代替自适应电路,以及我们在代码数据量数的量子状态层析成像上使用量子状态层析成像来询问输出状态。值得注意的是,错误抑制的预先预测实验表明,在同一设备上的任何一对物理Qubits上,都超过了制备相同未编码的魔术状态的实质性。
摘要 - 对网络系统的网络威胁的增长,再加上AI技术和增强的处理能力的扩散,拒绝服务(DOS)攻击变得越来越复杂且易于执行。他们针对系统的可用性,损害整个系统而不会破坏基本的安全协议。因此,许多研究集中在防止,检测和减轻DOS攻击。然而,最新的系统化工作具有局限性,例如孤立的DOS对策,基于AI的研究的缺点以及缺乏DOS集成功能,例如隐私,匿名,身份验证和透明度。此外,量子计算机的出现是从攻击和防御角度来看DOS的游戏规则改变者,但它基本上仍未得到探索。这项研究旨在通过检查AI时代的(反) - 在适用时考虑量子后的安全性(PQ)安全性来解决这些差距。我们强调了当前文献中的缺陷,并提供了有关弥合这些差距的协同技术的见解。我们探索了DOS入侵检测的AI机制,评估尖端机器学习模型中的网络安全性能,并在DOS的背景下分析武器的AI。我们还通过联合学习和区块链调查了协作和分布式的反DOS框架。最后,我们评估可以将可用于预防和缓解的下一代网络系统集成到下一代网络系统中的积极主动方法,例如蜜饯,难题和身份验证方案。索引条款 - 符合条款;人工智能(AI);量子安全性;下一代网络;深度学习。