金刚烷(三环[3.3.1.1 1,7 ]癸烷;1,图 1)是分子最小的二元化合物,1933 年从原油中分离出来后首次被发现。1,2 尽管金刚烷于 1941 年首次通过化学合成,但直到 1957 年 Schleyer 报告了合成过程,金刚烷及其衍生物才开始普及。3,4 随后,该部分开始被用于药物研发计划,第一个有希望的药物突破是 1963 年发现金刚烷胺具有抗病毒活性(2,图 1)。5,6 在这份开创性报告发表后的 60 年里,金刚烷基化合物在药物化学和药物研发中得到了广泛的应用,目前有七种金刚烷基药物(3-8,图 1)用于临床。这些化合物用于治疗一系列疾病,包括病毒感染、神经退行性疾病、寻常痤疮和 2 型糖尿病。7
图 S1:使用 SCAN 函数获得的孤立五金刚烷分子的最低和最高占据分子轨道的模式分辨非谐波测量和电子-声子耦合能量 (EPCE)。上图:根据 100 K 下量子恒温分子动力学模拟获得的轨迹计算出的模式分辨非谐波测量。中图:使用冻结声子方法计算出的最低未占据分子轨道 (LUMO) 的模式分辨 EPCE。下图:使用冻结声子方法计算出的最高占据分子轨道 (HOMO)、HOMO-1 和 HOMO-2 能级的模式分辨 EPCE。
摘要:过热会影响某些抗癌药物的溶解度或亲脂性等特性。这些与温度相关的变化可以提高药物的效率和选择性,因为它们可能会影响药物的生物利用度、通过细胞膜的扩散或活性。最近一种创建热敏分子的方法是将氟原子掺入化学结构中,因为氟可以调节某些化学性质,如结合亲和力。本文我们报道了具有长烃链和同源氟化链的 1,3,5-三氮杂-7-磷杂金刚烷 (PTA) 衍生的磷烷金衍生物的抗癌作用。此外,我们还分析了温度对细胞毒性作用的影响。所研究的金(I)复合物与 PTA 衍生的磷烷对人类结肠癌细胞(Caco-2/TC7 细胞系)表现出抗增殖作用,可能是通过抑制细胞 TrxR 导致细胞内氧化还原状态功能障碍。此外,细胞周期因 p53 的激活而改变,复合物通过线粒体去极化和随之而来的 caspase-3 激活引起细胞凋亡。此外,结果表明,高温和多氟化链的存在会增强这种细胞毒性作用。