量子信息技术中必不可少的量子器件是在硅或蓝宝石晶片上制造的。最近的研究发现,晶片中的声学模式可以在量子态操控中发挥重要作用,包括声学和量子比特态之间的交换操作,从而导致冷却 1,2。声学模式由晶片上制备的压电换能器产生。这通常是材料声学研究最常用的方法,其中电极与换能器粘合,而换能器与感兴趣的样品直接接触。换能器对振荡电压的压电响应将电磁信号转换为机械振荡。在某些情况下,让电极或换能器与样品物理接触是不可取的或不切实际的。在这里,我们展示了一种用于产生和测量材料中声学共振的非接触式技术。Dobbs 3 描述了使用螺线管和静磁场在金属中产生声学共振。电磁信号与机械振动之间的耦合是通过磁场产生的洛伦兹力实现的,从而无需使用压电材料。洛伦兹力发生在金属表面或射频 (RF) 穿透深度内,从而在体内产生声学模式。通过这种方法,我们研究了硅晶片中的高谐波声学模式,精确测量了纵向和横向声速并计算了相应的弹性常数。我们的样品是一块 [001] 单晶硅晶片,一侧覆盖有 Nb 薄膜。样品从最初直径为 15 厘米的商用晶片上切割下来,尺寸为 4mmx 4mmx 330 µ m(浮区,电阻率 > 10,000 Ωcm)。本文详细描述的结果针对的是厚度为 155 nm 的 Nb 薄膜,由 Rigetti Computing 采用高功率脉冲磁控溅射 (HiPIMS) 制备。高达 14 T 的高磁场敏感度测量
腐蚀是通过化学攻击对金属的不可逆恶化。它发生在金属与环境相互作用导致其或其合金的环境相互作用时,以矿物质和矿石的形式返回其未精制的自然形式(Ogunleye等,2019)。金属通常倾向于腐蚀,因为它们总是喜欢由于腐蚀而恢复稳定的氧化物形式。低碳钢是现有的最重要的金属之一,具有各种工业应用。然而,由于pH,氧化还原潜力,氯化物和硫酸盐含量在环境中腐蚀(Popoola等,2013; Bhattarai等,2016)。由于LCS在性能耐用性和服务中的应用领域,对酸化水分中LCS表面反应的研究一直是研究的主题(Cheng等,2007)。典型的情况很多,其中已广泛应用合成抑制剂以保护金属表面免受化学工业,纺织湿加工厂,海洋,石油和天然气工业的腐蚀(Uchenna等,2019); Zhang等人,2012年; Markhali等人,2013年)。大多数合成有机抑制剂在其结构中含有氮,硫或氧原子(Chigondo and Chigondo 2016)。这些合成抑制剂的成本很高。这没有承受,它们可能对环境和人类的生命有毒。目前,腐蚀科学家和工程师正在探索植物提取物抑制剂的使用,这些植物提取物抑制剂廉价,易于使用,环保且在生态上可以接受并且可再生。参考:植物提取物主要是由碳,氮,氧和硫原子组成的有机化合物。它们对环境友好,构成了有毒合成抑制剂的良好位移,因此促进了环境的绿色,Frederick等人(2020年)。这些容易获得的绿色抑制剂是无毒的,廉价的,可以从各种植物部分中提取(Okafor等,2011; Oguzie等,2013)。
材料的触觉感知将材料的性质和结构与我们通过触摸识别和评估这些材料的过程联系起来。触觉感知的研究结果使我们能够设计和制造具有预定触觉吸引力的材料。天然和日常材料的触觉感知通常用所谓的触觉维度来描述,这些维度由粗糙/光滑、硬/软、冷/暖和粘/滑等词对定义。[1] 这些触觉维度是在心理物理研究中确定的,这些研究分析了研究参与者的主观判断与粗糙度、弹性柔顺性、热扩散率和摩擦力等物理材料性质之间的相关性。触觉维度感知的潜在机制和相应的敏锐度是正在进行的研究的主题。一种重要的研究策略是创建定义明确的模型材料,该模型材料只有一个参数(如表面粗糙度或样品柔顺性)有系统的变化,目的是刺激特定的触觉维度。通过对光滑度感知或这些样本之间相似性感知等量的幅度估计,研究参与者可以洞悉相关材料参数和触觉感知的细微差异。大量研究工作在系统地改变表面结构的实验中探讨了粗糙/光滑维度。仅举几个例子,Lederman 和 Taylor 量化了感知粗糙度的幅度估计如何取决于金属表面凹槽的几何形状和宽度。[2] Hollins 研究了不同粒径砂纸的触觉,为纹理感知的双重理论提供证据,该理论预测,对于 100-200 μ m 以下的细微结构,触觉主要受振动提示的影响,而对于粗糙结构,则受空间静态提示的影响。[3] Skedung 制备了应变引起的表面皱纹的复制品,并证明人类的触觉可以辨别纳米级的振幅。 [4] 除了心理物理学研究之外,对纹理表面触觉的神经生理学研究还提供了对不同尺度粗糙度感知的神经机制的洞察。[5] 人类通过触觉辨别表面化学性质的能力已在平面上得到证实,包括不同的材料 [6] 和不同的化学表面改性。[7]
微电子设备的微型化要求制造技术达到原子级精度,特别是在薄膜沉积方面。原子层沉积 (ALD) 因其在控制复杂三维结构上的薄膜厚度和成分方面的精度而受到认可。本研究重点研究了钌 (Ru) 的 ALD 成核和生长机制,钌是一种对未来微电子学具有重大影响的金属。尽管具有诸多优势,但将高表面自由能材料(如 Ru)沉积在低表面自由能材料(如氧化物)上通常面临成核延迟大和生长不均匀的挑战。为了应对这些挑战,我们探索了使用三甲基铝 (TMA) 或二乙基锌 (DEZ) 进行有机金属表面预处理以增强 Ru 薄膜成核和生长的有效性。我们的研究采用了一种研究较少的 Ru 前体,环戊二烯基乙基(二羰基)钌 [RuCpEt(CO) 2 ],它在减少成核延迟和增加薄膜连续性方面表现出良好的效果。 Ru ALD 在具有天然氧化物的硅基板上进行,使用 RuCpEt(CO) 2 和 O 2 作为共反应物。我们的研究结果表明,表面预处理显著提高了最初 60 个 ALD 循环内的成核密度和膜厚度,与未经预处理的基板相比,Ru 表面覆盖率提高了 3.2 倍。在密度泛函理论计算的支持下,我们提出,与之前研究的 Ru(Cp) 2 相比,RuCpEt(CO) 2 观察到的增强成核是由于两种关键机制:沉积过程中 CO 配体的促进去除,从而增强了前体的反应性,以及涉及 RuCpEt(CO) 2 的乙基配体和表面上的金属烷基团的氢提取反应。这项研究不仅加深了我们对 Ru ALD 工艺的理解,而且还强调了前体化学和表面处理对优化 ALD 以用于高级微电子应用的重大影响。
16.摘要 该项目包括两个阶段。在第一阶段的研究中,通过 SAE J2334 试验和 ASTM B117 试验检查了两种盐的相对腐蚀性。在第二阶段的研究中,应用了 SAE J2334 试验和 NACE TM -01-69 试验(经太平洋北部各州修改)。该项目检查的代表性金属包括 410 和 304L 不锈钢、2024 和 5086 铝、涂层汽车车身板、铜线和低碳钢。SAE J2334 试验的实验结果表明,MgCl 2 对测试的裸露金属的腐蚀性比 NaCl 更强。然而,ASTM B117 试验的实验结果却得出了相反的结论。由于结论相矛盾,进一步使用 NACE TM -01- 69(经太平洋西北雪地战士修改)进行了试验。SAE J2334 和 NACE TM-01-69 试验再次得出了相反的结论。为了调查造成不一致的原因,修改了 SAE J2334 和 NACE TM-01-69 试验的实验条件,并对两种试验进行了各种修改模式。发现试验结果不一致不是由于氯化物溶液的化学浓度不同、浸泡时间不同、试验时间不同或试验温度不同造成的。不一致是由于高湿度环境下两种盐的湿度条件不同和性质不同造成的。该项目所采用的三种测试方法,有三种基本湿度条件:干、湿(饱和湿度)、浸(浸没)。17.由于MgCl 2溶液比NaCl溶液具有更高的粘度和更强的亲水性,MgCl 2溶液在干燥条件下更容易粘附并结晶在金属表面,然后在潮湿条件下变成金属表面的溶液。这种干湿效应导致MgCl 2在不同测试条件下的腐蚀行为不同。因此,根据汽车部件所经历的使用条件,在潮湿环境下MgCl 2比NaCl更具腐蚀性,而在浸泡和干旱环境下NaCl更具腐蚀性。该结论是基于对科罗拉多州使用的除冰盐的实验得出的。实施研究的结果导致CDOT使用的除冰化学品的规格发生变化。新的腐蚀性规范要求 CDOT 使用的氯化镁对铝和不锈钢的腐蚀性不大于氯化钠,经 NACE TM -01-69 方法测试。关键词 环境、冬季维护、除冰、氯化镁、氯化钠、腐蚀
摘要在受支持的金属纳米颗粒中,金属原子的化学潜力是与纳米颗粒的催化活性和稳定性相关的重要描述符。在这里,我们得出了与粒子接触区域的半径与支撑𝜇 𝜇 𝜇𝑀的半径和金属 /支撑界面()的粘附能有关的表达,该表达式假定颗粒具有球形帽的形状,但与支撑()的形状相关,但在金属表面能量中增加了c and的经验校正和近距离降低的经验校正。We then show that, at any assumed contact angle, we can simultaneously fit previously-reported measurements of both calorimetric (from heats of 𝜇 𝑀 metal vapor adsorption during nanoparticle growth by vapor deposition) versus metal coverage data and the He + low-energy ion scattering (LEIS) intensities for the metal and/or support versus metal coverage (using our recently-developed spherical cap model用于定量的leis强度),以确定粒径与覆盖范围。只有一种接触角度的选择给出了一对接触角的值,并且与球形粒子平衡形状的Young-dupré𝐸方程一致。在这种平衡形状下,我们应用了该球形盖模型(SCM),以重新分析微钙化金属化学电位和LEIS信号与九种金属 /支撑组合的覆盖数据,以前通过假设颗粒具有半球形盖的形状,即< / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div,接触角为90。我们表明,这种修订的方法与量热法和Leis数据达成了密切的一致性;最佳拟合的接触角从64到84不等,纠正了较早的90的假设。这些结果提供了显着的准确性提高:粒度与覆盖,金属化学势与尺寸和覆盖范围,金属 /支撑粘附能以及CEO 2(111)上的CU,AG和AU的接触角(111),MGO上的Ni(100),AG(100),Fe 3 O 4(111)和TIO 2(100)和TiO 2(100)以及AG,Ni-ni和ni-support ni-support。这种修订的方法比早期半球形帽模型(HCM)更广泛地适用。
照明,就像一张纸一样。除了节能外,电子纸还具有提供无眩光表面的额外好处,可见性甚至可以改善阳光(与当前在阳光明媚的条件下难以看见的当前发射显示器相比)。[1,2]基于液晶或电子表演的黑色和白色电子纸纸已经是流行的消费产品。但是,开发高色彩纸的颜色更具挑战性。特别是,仅基于环境光的图像生产对最大可能的亮度施加限制。因此,仅优化颜色质量(色度)不足,但是高性能的电子纸也需要高度的绝对反射。[3]最近的研究探索了各种方法,以基于薄膜的结构颜色[4-9]或等离子体[10-15]或介电元面而产生高度反映表面。[16–18]这些系统已与功能材料,如液晶,相变或电致色素材料(以开/关反射表面开关)相结合。[19-23]但是,即使各个区域将提供100%的峰值反射率,使用传统的RGB子像素彼此隔壁创建颜色图像也可以将最大反射率降低至33%,因为每种颜色最多只能占据总面积的三分之一。为了避免此问题,我们需要开发具有可调颜色(单个颜色)的反射像素,而不是依靠带有固定颜色的邻居像素。[3,30–32],例如Peng等。使用已经探索了各种方法,以动态调整光腔和元面的共振和颜色,[1,19,22,24-27],其中有些通过电刺激并调节反射的结构颜色。[25,28,29]其中是使用具有电致色谱特性的材料来调节纳米光腔和等离子装置。利用了聚苯胺的电化学可调折射率(RI),以控制聚合物涂层的等离子等离子金纳米颗粒和金属表面之间形成的间隙等离子体。[33]颜色域和色度通常在此类系统中受到限制,部分是由于RI-TONEABISIS和电染色材料的相对吸收性。最近还提出了用于光腔的颜色调整的无机电色材料(例如氧化钨(WO 3))。[3,34,35]然而,对任何单个WO 3腔结构的调整都不覆盖整个可见范围,[3]主要是因为无机的电染料材料没有足够的RI变化,并且在离子插入时也没有改变其厚度。
普吉特湾海军造船厂和中级维修设施高压电工 (NAVFAC):为 PSNS 和其他西北地区海军设施维护、维修和安装高压变电站和配电设备。船舶装配工(车间 11):制造、安装、改装和维修海军舰艇的内部和外部组件和结构。这些结构包括舱壁、地基、门、甲板、舱口、上层建筑、油箱、海底箱、浮筒和甲板室。钣金技工(车间 17):设计、制造、安装和维修海军舰艇上的通风设备、家具、轻型舱壁和门。焊工(车间 26):在海军舰艇的大修、维修和建造中使用复杂的热工艺连接各种金属。电镀工(车间 31):完成各种金属表面的功能性和工业性槽镀和便携式选择性电镀以修复船上部件。其他工艺包括使用抛光技术对各种金属表面进行化学清洗和尺寸恢复。电子工业控制机修工(车间 31):维护、排除故障和修理集成到工业系统(如数控和计算机数控机床、激光测量系统、自动焊接系统、平衡和测量机以及感应炉)的所有线性、数字和光纤电子设备。机械师(车间 31):各种船舶部件的内部维修和测试。使用传统和计算机控制机械制造新部件。能够加工从 ¼ 英寸螺钉到 50 英尺长的推进轴的所有东西。生产机械电工(车间 06):维护、安装、修理、改造和排除故障多种类型的工业机械、工具和设备。机械、工具和设备包括:车床、铣床、压力机、焊接和火焰切割设备、热封机和橡胶磨机。船用机械机修工(车间 38):排除故障、修理、更换和维护海军舰艇上的各种机械系统。工作范围覆盖整艘船——从桅杆天线到螺旋桨,从船头到船尾。船舶电工(车间 51):安装、连接和操作测试船上电气系统和组件,包括电力和照明系统、声控电话、电热和通风设备。船舶管道工(车间 56):安装、维修、改造和更换海军舰艇上的管道系统。系统包括饮用水、航空燃料和高压蒸汽。
就像一张纸一样,电子纸可以用在照明中。除了节能之外,电子纸还具有提供无眩光表面的额外好处,即使在阳光下也能提高可视性(相比之下,目前的发射显示器在阳光充足的情况下很难看清)。[1,2] 基于液晶或电泳显示器等的黑白电子纸已经是流行的消费产品。然而,开发高性能彩色电子纸更具挑战性。特别是,仅基于环境光的图像生成会限制最大亮度。因此,仅仅优化色彩质量(色度)是不够的,高性能电子纸还需要高的绝对反射率。[3] 最近的研究探索了各种方法来创建高反射表面,这些方法基于薄膜腔的结构着色[4–9]、等离子体[10–15]或电介质超表面。 [16–18] 这些系统进一步与液晶、相变或电致变色材料等功能材料相结合,以打开/关闭此类反射表面。[19–23] 但是,即使单个区域可以提供 100% 的峰值反射率,使用彼此相邻的传统 RGB 子像素创建彩色图像也会将最大反射率降低到最多 33%,因为每种颜色最多只能占据总面积的三分之一。为了解决这个问题,我们需要开发具有可调颜色的反射像素(单像素),而不是依赖具有固定颜色的相邻像素。已经探索了各种方法来动态调整光腔和超表面的共振和颜色,[1,19,22,24–27] 其中一些通过电刺激来调节反射的结构颜色。[25,28,29] 其中包括使用具有电致变色特性的材料来调节纳米光腔和等离子体装置。 [3,30–32] 例如,Peng 等人利用聚苯胺的电化学可调折射率 (RI) 来控制聚合物涂覆的等离子体金纳米粒子和金属表面之间形成的间隙等离子体。 [33] 此类系统中的色域和色度通常受到限制,部分原因是 RI 可调性有限,以及电致变色材料的相对吸收性。最近,氧化钨 (WO3) 等无机电致变色材料也被提议用于光学腔的颜色调谐。 [3,34,35] 然而,任何单个 WO3 腔结构的调谐都无法覆盖整个可见光范围,[3] 这主要是因为无机电致变色材料没有提供足够的 RI 变化,并且在离子插入时也不会改变其厚度。为了实现全色调谐,使用
通过 ALD 循环次数可以实现区域选择性沉积 (ASD)。然而,对薄膜生长的横向控制,即区域选择性沉积 (ASD),对于 ALD 来说要困难得多。尤其微电子应用需要 ASD 来满足制造要求,因为关键特征尺寸缩小到纳米级,而且通过自上而下的光刻方法进行图案化变得越来越具有挑战性。[2,3] 光刻掩模需要以纳米级精度对准,即使是最轻微的掩模错位也必然会导致边缘位置误差 (EPE)。在 ALD 中实现 ASD 的传统方法可分为三大类:1) 非生长区域钝化;2) 生长区域的活化;3) 使用固有选择性沉积化学。在类别 (1) 中,非生长区域用钝化自组装单分子层 (SAM) 或聚合物膜进行功能化。 [4,5] 通常,当前体吸附在非理想组装或部分降解的 SAM 上时,会发生选择性损失。吸附在 SAM 上的前体分子作为后续前体剂量的反应位点,从而丧失选择性。[2] 在下一个处理步骤之前,还必须完全去除钝化层。在类别 (2) 中,生长区域表面在 ASD 之前进行功能化,以实现薄膜生长。[6–7] 然后,薄膜仅沉积在功能化表面上,而其他区域保持清洁。这种方法规定了非生长和功能化生长表面上的薄膜成核的明显对比。因此,它主要限于金属 ALD 工艺,因为金属表面比其他表面更容易成核。此外,需要仔细控制剂量以维持生长选择性。由于 ASD 的活化层被 ALD 膜掩埋,因此下一个处理步骤可以直接进行。在类别 (3) 中,即固有选择性 ALD,选择性完全由前体与基底上不同材料表面之间的反应决定。在正在制造的薄膜器件结构表面上,不同的材料暴露于 ALD 前体,但薄膜仅生长在某些优选材料上,从而定义生长区域。这是真正的自下而上的处理,将整体图案化步骤减少到最低限度。由于图案自对准,因此排除了 EPE。出于这些原因,(3) 是 ASD 的一个非常有吸引力的选择,但控制表面化学以在几个 ALD 循环中保持 ASD 极具挑战性。因此 (3) 主要限于金属的 ASD。[8–9]