透皮胰岛素递送提供了传统皮下注射的有希望的替代方法,为糖尿病管理提供了一种无痛且可自给自足的治疗选择。微针技术已成为一种可行的方法,利用细小的针状投影绕过角质层并系统地输送胰岛素。正在探索各种材料,包括金属,硅,陶瓷,聚合物和二氧化硅玻璃,以用于微针制造。本综述讨论了皮肤的解剖结构,药物吸收途径以及透皮药物输送系统的优势,包括微针阵列,斑块和泵。突出显示了微针取代皮下胰岛素注射的潜力,以及确保精确药物释放并应对与皮肤刺激,药物稳定性和可伸缩性有关的挑战的重要性。
增材制造 (AM) 通常会导致钛合金强度高但延展性差。混合 AM 是一种能够同时提高延展性和强度的解决方案。在本研究中,通过将定向能量沉积与层间加工相结合,实现了 Ti-6Al-4V 的混合 AM。通过检查微观结构、残余应力和显微硬度,可以解释层间加工如何在保持与打印样品相同的强度的同时使延展性提高 63%。层间加工在打印中引入了反复中断,从而导致加工界面处针状 α 板条在缓慢冷却下变粗。选择性加工层上的粗 α 板条增加了拉伸载荷下的位错运动并提高了整体延展性。本出版物中强调的结果证明了混合 AM 提高钛合金韧性的可行性。关键词:混合增材制造、铣削、定向能量沉积、钛 1. 简介
中国拥有全球最大的石墨储量,为 7800 万吨(27%)。4 中国还能够以比世界其他地区更大的比例开发其储量。全球大部分石墨开采(77%)都在中国境内。4 大部分石墨生产成高价值下游石墨产品也在中国完成,75% 的天然石墨阳极在中国生产。6 从供应多样性的角度来看,更糟糕的是,中国主导着石墨球化中游步骤,将天然鳞片石墨转化为包覆纯化球形石墨 (CPSG),占全球产量的 99%(完整的石墨供应链见附件一)。6 中国还能够在其庞大的煤炭基地和石墨储量之间创造协同效应。煤衍生的针状焦可用于制造合成石墨,使中国在合成和天然石墨生产方面都处于领先地位。7 电动汽车电池同时使用天然石墨和合成石墨。8
一艘船的建造使用寿命为20至30年。船舶退役是结束船舶运行的行为。拆解是拆除退役船舶的行为。拆除后的钢材可以作为废料出售或用于其他用途。在此背景下,该项工作旨在评估通过 MAG 焊接海军废料板材的接头。 X 射线荧光 (XRF) 显示所收到的材料符合碳钢 ASTM A131 标准。焊接后焊接接头组织为熔合区内的针状铁素体、晶界铁素体、魏氏体和马氏体;热影响区组织为铁素体、多边形铁素体、粒状贝氏体;以及母材中含有铁素体的珠光体。这些区域的硬度与其组成相一致。所得结果符合预期,证实了采用 MAG 工艺焊接海军废料并在新舰船上重复使用的可行性。
引言全球神经病的最普遍的根源是糖尿病,由于肥胖症和2型糖尿病率的上升,在发展中国家越来越普遍。糖尿病的一种常见且严重丧失的后果是糖尿病神经病。1三分之二的糖尿病患者被认为具有亚临床或临床神经病。全球人口中很大一部分患有糖尿病神经病,这是糖尿病的危险而普遍的后果。这种疾病是通过延长暴露于高血糖的情况下引起的,这会损害整个身体的神经。大约10%左右的糖尿病患者患有持续的创伤。这种疼痛可能是严重的,难以控制的,刺激产生的或自发的。疼痛症状可能包括燃烧,类似针状的感觉,射击,不适,刺戳,尖锐的抽筋,刺痛,冷冻或异常性。通常在晚上更糟。约有25至50%的糖尿病自主神经病患者在病情的五到十年内死亡,这是沉默的心肌梗塞的原因。糖尿病神经病会影响感觉异常,
本研究探讨了通过高功率和高速激光表面改性 (LSM) 制造 Ti6Al4V 功能梯度材料。原始样品微观结构由细长的等轴 α 相和 β 相晶界组成。对这些样品应用了九种不同的 LSM 工艺参数集。扫描电子显微镜显示,在所有情况下,激光处理样品的表面附近都有细小的针状马氏体相。观察到马氏体区下方的过渡微观结构区,其中有较大的等轴晶粒和一些马氏体 α 相生长。样品内部包含原始微观结构。发现在所有工艺参数集下进行表面改性后,表面粗糙度都会增加。进行了纳米压痕测试,以获得三相(即马氏体 α、等轴 α 和晶界 β)的硬度和模量。开发了双相晶体塑性有限元模型来研究单轴拉伸载荷下的三区功能梯度微观结构。硬化表面区域阻止了连续滑移带的扩展,而过渡区则阻止了样品外表面和内部之间过大的应力集中。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
超临界透镜(SCL)可以打破远场中的衍射极限,并已证明用于高分辨率扫描共共共聚焦成像。在紫罗兰或紫外线(UV)波长时,其在较尖锐的焦点和类似针状的长焦点深度方面应允许高分辨率光刻,但是,从未实验证明这一点。作为概念证明,在本文中,在405 nm(h-line)波长下运行的波长较小,其全尺寸最大的最大最大量度比传统的壁球镜头比传统的侧脚镜头更长,而焦点的深度则更长,同时将受控的侧面裂片保持直接签名(DLW)的直接写作(DLW)光刻。氮化铝(ALN)具有高折射率和紫外线范围内低损失的铝(ALN)用于制造金属人的基于纳米乳鼠的跨质体结构。使用具有子划分限制的焦点功能的SCL制造具有改进音高分辨率的光栅阵列。DLW短波长的SCL的基于ALN的元表面可以进一步扩展到紫外线或深紫外线光刻,并且可能引起研究和行业应用的极大兴趣。
泥炭地火灾对全球环境构成严重威胁。现有的泥炭地火灾早期探测系统通常探测空气温度、湿度、气体、烟雾和火势等参数。本文提出了一种利用树枝含水量参数的新型泥炭地火灾早期探测方法。与目前的泥炭地火灾早期探测系统相比,该方法采用了火灾脆弱性最重要的参数方法。具体来说,我们开发了一种基于物联网 (IoT) 的树枝干燥度传感器,以实现现场应用系统。我们提出了一种采用电阻传感方法的树枝干燥度传感器,该方法采用针状电极来测量树枝含水量。使用树枝干燥度传感器,可获得三种可燃性等级,即非常难燃(湿度高于 30%)、难燃(湿度在 5%-30% 之间)和易燃(湿度低于 5%)。该装置采用现成的紧凑型便携式材料。该仪器采用低功耗微控制器和长距离 (LoRa) 发射器进行数字控制,提供长寿命电池和长距离数据传输。传感器数据可视化以树枝干燥度值呈现,并根据火灾脆弱性等级进行分类。所提出的系统提供实时和可持续的测量。