HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:在辐射下对钙钛矿设备中的界面特性的理解对于其工程至关重要。在这项研究中,我们展示了CSPBBR 3钙钛矿纳米晶体(PNC)和AU之间界面的电子结构如何受X射线,近红外(NIR)和紫外线(UV)光的照射的影响。可以通过使用低剂量X射线光电子光谱(XPS)来区分X射线和光线暴露的影响。除了金属铅(PB 0)的常见降解产物外,在暴露于高强度X射线或紫外线后,在PB 4F XPS光谱中鉴定出了新的中间分量(PB INT)。pb int分量被确定为单层金属Pb,是由钙钛矿结构破裂引起的pb诱导的pb的无电位沉积(upd)的单层金属Pb,允许PB 2+迁移。
在这里,我们研究了掺杂(X = 0、0.05和0.1)氧化二聚体(X = 0、0.05和0.1)的结构和磁性能的影响,该氧化物(NDFEO₃)纳米颗粒通过慢速溶液燃烧技术合成。X-射线衍射(XRD)分析证实了带有空间群PBNM的原晶晶体结构(JCPDS卡No。25 - 1149),并且随着GD掺杂浓度的增加,结晶石的尺寸从52 nm降至32 nm。场发射扫描电子显微镜(FESEM)揭示了具有一致粒径的良好组织和团聚的纳米颗粒。使用squid磁力计对所有样品的铁磁特征进行了磁性测量,随着GD掺杂浓度的增加,磁矩的增加。滞后曲线显示出雷神磁化的增加,并且凝固性从0.7 t增加到0.4 t。这些发现表明,GD掺杂的NDFEO纳米颗粒具有增强的磁矩和降低的凝聚力,降低了渗透率,对纺纱应用的潜力持有。
塞缪尔·埃里克森(Samuel Erickson),1卡利斯塔·卢姆(Calista Lum),1凯蒂·斯蒂芬斯(Katie Stephens),2 Mritunjaya Parashar,3 Darshpreet Kaur Saini,3 Bibhudutta Rout,3 Cheol Park,4 Timothy J. Peshek,Timothy J. Peshek,5 Lyndsey McMillon,5 Lyndsey McMillon,5材料和生物材料科学与工程,加利福尼亚大学,默塞德分校,默塞德,加利福尼亚州,美国3北德克萨斯大学,美国德克萨斯州登顿市北德克萨斯大学4高级材料和加工分支,NASA LANGLEY研究中心,弗吉尼亚州汉普顿,弗吉尼亚州23681,美国5光伏和电力化学领导人,乔治·艾尔纳·H·格兰德·艾尔纳(John H. *通信:sghosh@ucmerced.edu https://doi.org/10.1016/j.isci.2024.111586
摘要:由于各个单元之间的相互作用,可以从有序的发射器集合中出现集体光学性质。卤化物钙钛矿纳米晶体的超晶格表现出集体光发射,受偶极子 - 同时激发的纳米晶体之间的偶极子相互作用。与未偶联的纳米晶体的发射相比,这种耦合改变了发射能和速率。我们证明了量子限制如何控制合奏中纳米晶体之间耦合的性质。通过控制纳米晶体的大小或对BOHR半径的组成控制来改变限制的程度。在由弱受限制的纳米晶体制成的超晶格中,集体发射以更快的发射速率进行红移,显示了超荧光的关键特征。相比之下,更强的量子限制纳米晶体的集体发射以较慢的发射速率进行蓝色。两种类型的集体发射都表现出相关的多光子发射爆发,显示出不同的光子束发射统计。量子限制改变了纳米晶体内过渡偶极子的首选比对,并切换邻居之间的相对偶极子方向,从而产生了相反的集体光学行为。我们的结果将这些集体效应扩展到相对较高的温度,并更好地了解固态处的激子相互作用和集体排放现象。关键字:纳米晶体,铅卤化物钙钛矿,超晶格,纳米晶体耦合,超荧光,量子限制T
a b s t r a c t实施单线裂变材料是提高太阳能电池效率的有效策略,而无需引入实质性的复杂性或成本。在这项研究中,我们探讨了包括四烯的双层系统中的单元激激裂裂变过程的可能性,该过程是基于铅(PB)和TIN(PB)和TIN(SN)的混合物(CH 3 NH 3 NH 3 NH 3 nH 3 nH 3 nH 3 X x Pb 1- i 3)。我们首先合成了一系列解决方案的低频带gap ch 3 nh 3 nh 3 x pb 1 -x i 3 perovskites(0 然后,我们将热蒸发的四烯耦合为有机分子三重敏敏化剂,三重态能量为≈1.3eV,ch 3 nh 3 nh 3 nh 3 x x pb 1 -x i 3 perovskites(0 我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。 这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。然后,我们将热蒸发的四烯耦合为有机分子三重敏敏化剂,三重态能量为≈1.3eV,ch 3 nh 3 nh 3 nh 3 x x pb 1 -x i 3 perovskites(0 我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。 这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。
摘要 卤化物钙钛矿太阳能电池 (PSC) 已成为下一代光伏技术中最有前途的技术之一,为提高效率、降低成本和快速扩展提供了途径。它们的独特属性——包括高吸收系数、可调带隙、缺陷容忍度和低温可加工性——使开发能够超越传统硅基技术的多功能太阳能设备成为可能。最近的突破推动钙钛矿太阳能电池的能量转换效率 (PCE) 在单结电池中超过 27%,在串联配置中超过 34%。然而,仍然存在重大挑战,特别是在长期稳定性、与铅含量有关的环境问题以及商业部署的可扩展性方面。这篇评论文章讨论了卤化物钙钛矿研究的现状,重点介绍了材料设计、设备架构和制造工艺方面的进步,这些进步推动 PSC 走在可再生能源技术的前沿。我们探索了钙钛矿光伏的潜在应用,从串联太阳能电池到柔性、建筑集成和便携式设备,以及它们在克服硅光伏局限性方面的作用。尽管钙钛矿太阳能电池前景光明,但在实现广泛商业化之前,它必须解决持续存在的挑战,例如现实条件下的稳定性和铅毒性。通过研究最近的进展和确定未来的研究方向,这篇评论文章全面展望了卤化物钙钛矿太阳能电池在塑造全球能源系统未来方面的作用。
S。Maqsood A,B,*,S。Mumtaz C,M。A. Javed D,M。Attiqus Salam A,E,E,Khalid M. Elhindi F A Lahore -54000 B物理学的Wahdat Road wahdat Road Govt的物理学系,GC Polysics(CASP),GC University,lahore colication and libiolicy kc and libioloy -54000 colohory -00000 co。大学,首尔01897,韩国d数学系,加利福尼亚大学,拉合尔-54000,巴基斯坦e物理系,GC大学,拉合尔-54000,巴基斯坦F植物生产系,食品与农业科学学院,国王Saud University,Saud University,P.O.Box 2460,Riyadh 11451,沙特阿拉伯在这项研究中,我们介绍了对卤化物双重perovskites CS 2 AUSBX 6(X = CL,BR,I)的特征的经验研究,并强调结构,机械,机械和光电元素,以及热电学能力。对热和结构耐用性的评估涉及测量制造和公差比的焓。在结构中相同位置用溴(BR)和碘(I)代替氯(CL)导致晶格特性的激增,并且大量弹性减少。使用弹性系数的模量计算弹性表明其柔性特征。对电带结构的检查表明,它具有间接的带隙特征。强调了许多特征的适用性,例如介电系数,灭绝系数,反射率,电子电导率,热电导率以及Seebeck系数,并强调用于光伏和热小工具。(2024年9月29日收到; 2024年12月5日接受)关键词:热性能,光学特征,双钙钛矿卤化物,间接类型的带隙半导体材料材料1。引入全球人口的指数增长以及各种高级电子设备的广泛利用导致能源需求的持续增长,而当前的化石燃料无法满足[1,2]。为了解决日益增长的全球能源消耗,获得可再生和环保能源至关重要[3]。专家正在积极寻求具有成本效益,环保且非常有效的能源替代方案来满足需求[4]。太阳能由于其可及性和生态友好而是所有形式的可持续能源之间的最佳选择[5]。根据研究结果,利用来自太阳的一个小时的光线可以产生足够的电能,以满足全年的全球电力需求。太阳能是丰富而强大的电力来源。如果我们利用并将其转变为电力,它有可能以当前形式维持全球人口二十七年的时间[6,7]。石油和煤中的所有能量与地球连续三天内接收的太阳辐射量相同[8,9]。太阳能是指太阳发出的电磁辐射,可以利用通过使用太阳能电池来产生温暖或电力[10]。太阳能电池可分为三代。最初的太阳能电池耐用且可靠,利用硅
摘要:这项研究探索了钙钛矿太阳能电池的性能,包括MASNI3,CH3NH3SNI3,CSPBI3和CSSNGEI3,分析关键指标,例如效率,敞开电路电压(VOC),短路电流电流密度(JSC)和填充因子(JSC)和填充因子(ff)。使用SCAPS软件的模拟提供了基线数据,并使用高级计算技术对其进行了进一步验证和扩展。灵敏度分析揭示了诸如带隙能量和载体迁移率之类的参数的影响,而层优化和电路模型则提供了对增强设备性能的见解。比较分析和现实世界模拟弥合了实验室结果与实际应用之间的差距,并得到了机器学习模型的支持,以预测新型材料的效率。这种全面的方法有助于优化钙钛矿太阳能电池以进行未来的应用。