炎症性肠病 (IBD) 包括溃疡性结肠炎 (UC) 和克罗恩病 (CD),是一种慢性复发性疾病,影响着全球约 700 万人 [1,2]。IBD 是一种多因素疾病,与饮食、遗传、环境、肠道微生物群和免疫系统之间存在复杂的相互作用,但其机制仍不太清楚 [3]。目前,IBD 治疗包括针对免疫系统的生物和小分子疗法。这些药物可能有严重的副作用,包括感染、恶性肿瘤和血栓栓塞。此外,它们只能在一部分患者中实现持续缓解 [4],这凸显了对新治疗方法的需求。最近的进展表明,胆汁酸 (BA) 等肠道代谢物在 IBD 中也至关重要。BA 是由胆固醇衍生的两亲性分子,形成原代 BA。这些原发性胆汁酸经历肠肝循环,并可被肠道菌群去偶联形成次级胆汁酸。胆汁酸通过作为信号分子激活多种胆汁酸受体 (BAR) 对肠道发挥作用,从而调节肠道稳态 [5]。深入了解胆汁酸在 IBD 中的作用可能会发现以前未知的发病机制并揭示治疗 IBD 的新方法。在本综述中,我们全面概述了最近阐明胆汁酸的合成和功能及其在 IBD 发病机制中的多因素作用的研究,讨论了几种潜在的基于胆汁酸的 IBD 治疗方法,并确定了进一步研究的领域,以加深我们对胆汁酸和 IBD 之间复杂相互作用的理解。我们对 2020 年 1 月至 2024 年 10 月期间的 PubMed、Embase 和 Scopus 数据库进行了全面搜索,以查找关于胆汁酸在 IBD 中的作用的英文文章。使用的具体搜索词如下:“胆汁酸”、“胆汁盐”、“炎症性肠病”、“IBD”、“克罗恩病”、“CD”、“溃疡性结肠炎”、“UC”和“结肠炎”。筛选过程涉及两名独立审阅者(SHB 和 SC),他们首先评估标题和摘要,以确定可能相关的
©2022 Wiley -VCH GMBH。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线网上在http://doi.org/10.1002/adma.202109157获得。
弱酸是一种在产生氢(H 3 O +)离子水溶液中部分电离的化合物。任何弱酸解离的一般方程式可以写为:HA(aq) + H 2 O(l)a - (aq) + H 3 O +(aq)(1)添加强碱会导致中和反应导致氢氧化离子(oh -oh)与水合产生水:hydronium的水:在中和反应中,根据Le Chatelier的原理将方程1中的平衡移到右侧。neu tralization过程可以写成方程(1)和(2)的总和:ha(aq) + oh - (aq)a - (aq) + h 2 o(l)(l)(3)未知解的浓度可以通过测量添加的滴定剂量达到等效点来确定。当所有酸被碱中和时,等效点发生。将通过使用在等价点上更改颜色的指标来确定
Bamberger Amco聚合物的免责声明:Bamberger Amco聚合物(“ BAP”)不是该产品的制造商,BAP尚未以任何方式测试,设计,更改或修改该产品。BAP不会独立测试产品或验证本文档中提供的信息。本文档中提供的信息是由制造商提供的,BAP对用户对此信息的依赖和使用结果不承担任何责任。本文包含的信息不是任何形式的BAP保修,也不是旨在的。用户必须进行自己的代表性测试,以确定产品的安全性和适用性,以便其预期用途,并且用户假设产品使用的所有风险,无论产品是单独使用还是与其他材料混合使用,还是作为其他产品的组成部分。bap对于对产品提供的任何建议或结果,也不使用产品侵犯任何专利的任何建议或责任。因此,bap违反了所有明示或暗示的保证,包括适销性的保证以及适合任何特定目的或用途的保证。上述补救措施的局限性和责任的排除反映,并且是对产品收取的价格的考虑的一部分。
劳动力计划具有异质时间偏好(先前的标题为“按需运输:驾驶员工资与平台利润”)应用和计算数学研讨会(Dartmouth Math)2023论文阅读小组(Dartmouth CS)2022 2022222年Rothkopf Prive session(印第安纳波利斯)2022 22222 222222222. 2022 MSOM服务管理SIG(慕尼黑),RMP Spotlight(Virtual)2022快速研究研讨会(TUCK),CORS(Vancouver)2022 Informs(虚拟),MSOM(虚拟),RMP(Virtual),Cors(Virtual),CORS(Virtual)2021 Data Science Day(Columbia)2021 2021 2021
A:分包商 专属实验室 *** 规格控制 *** BAERD-GEN-018-1B:湿法化学,采用重量法、容量法、比色法或滴定法等传统非仪器技术对溶液和水进行处理 PPS 20.01:磁粉检测 PPS 20.03:荧光渗透检测 PPS 20.07:铝合金电导率测试 PPS 20.08:金属硬度测试 PPS 31.02:铝的清洗工艺 PPS 31.05:耐腐蚀钢(C9)表面处理 PPS 31.09:钛及钛合金的清洗 PPS 32.01:铝及钛合金的浸泡式 C1 化学转化涂层 PPS 32.02:C1 化学转化涂层的手工应用 PPS 32.03:铬酸阳极氧化(A1) PPS 34.03:聚氨酯瓷漆的应用 PPS 34.08:环氧聚酰胺底漆的应用(F19 和 F45)。
食品需求的不断增长增加了对化学肥料的依赖,这些肥料促进植物快速生长和产量,但会产生毒性并对营养价值产生负面影响。因此,研究人员正致力于寻找安全食用、无毒、生产过程成本低、产量高且需要大量生产易得底物的替代品。微生物酶的潜在工业应用已显著增长,并且在 21 世纪仍在增长,以满足快速增长的人口的需求并应对自然资源的枯竭。由于对此类酶的需求很高,植酸酶已得到广泛研究,以降低人类食品和动物饲料中的植酸含量。它们构成有效的酶组,可以溶解植酸,从而为植物提供丰富的环境。植酸酶可以从各种来源中提取,例如植物、动物和微生物。与植物和动物植酸酶相比,微生物植酸酶已被确定为有效、稳定且有前途的生物接种剂。许多报告表明,微生物植酸酶可以利用现成的底物进行大规模生产。植酸酶在提取过程中既不涉及使用任何有毒化学品,也不会释放任何此类化学品;因此,它们符合生物接种剂的资格,并支持土壤的可持续性。此外,植酸酶基因现在被插入到新的植物/作物中,以增强转基因植物,从而减少对补充无机磷酸盐的需求和环境中磷酸盐的积累。本综述涵盖了植酸酶在农业系统中的重要性,强调了它的来源、作用机制和广泛的应用。
图 3. ML 方法对钙钛矿与非钙钛矿进行分类。a. 根据数据集中 XRD 模式范围(2 )的 CNN 预测准确度,b. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阴性,c. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阳性,d. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阴性,e. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阳性,f. XRD 模式(d 间距(Å))对于随机森林分类的特征重要性(步长:2.18°(2 ))。
[4-(3,6-二甲基-9H-咔唑-9基)丁基]膦酸 (Me-4PACz) 自组装分子 (SAM) 是解决倒置钙钛矿太阳能电池 (PSC) 中 NiO x 埋层界面问题的有效方法。但 Me-4PACz 端基 (咔唑核心) 不能强制钝化钙钛矿薄膜底部的缺陷。这里采用 Co-SAM 策略来修改 PSC 的埋层界面。Me-4PACz 掺杂氯化磷酰胆碱 (PC) 形成 Co-SAM 以提高单层覆盖率并降低漏电流。PC 中的磷酸基和氯离子 (Cl − ) 可以抑制 NiO x 表面缺陷。同时,PC 中的季铵离子和 Cl − 可以填充钙钛矿薄膜中的有机阳离子和卤素空位,使缺陷钝化。此外,Co-SAM 可以促进钙钛矿晶体的生长,协同解决埋藏缺陷问题,抑制非辐射复合,加速载流子传输,并减轻钙钛矿薄膜的残余应力。因此,Co-SAM 修饰的器件表现出高达 25.09% 的功率转换效率以及出色的器件稳定性,在单太阳照射下运行 1000 小时后,初始效率仍为 93%。这项工作展示了通过修饰 NiO x 上的 Co-SAM 来提高 PSC 性能和稳定性的新方法。
1天然产物生物合成研究部,瑞肯可持续研究科学中心,瓦科,日本西塔玛,2,农业教职员工,塞特苏丹大学,日本大阪,日本大阪,3个学位课程,生命与地球科学学位课程研究科学,瓦科(Wako),日本西塔玛(Wako),日本5分子结构特征单元,瑞肯(Riken)可持续研究科学中心,瓦科(Wako),西塔玛(Saitama),日本,6化学资源开发研究部,瑞科可持续研究科学中心,瓦科(Wako),西塔玛(Wako),日本瓦科(Wako),日本7号生命科学学院,东京大学(Tokyo University of Compied of Prancied of Phassied of toky of toky of toky of toky of to of to of to wako农业,金代大学,奈良,奈良,日本,9,农业技术与创新研究所,金奈大学,奈良,奈良,纳拉,日本,10个生命科学生命科学中心,托苏库巴高级研究联盟(TARA),塔斯科巴大学,tsukuba大学,tsukuba,tsukuba,tsukuba,ibaraki,ibaraki