通常,MCU被设计为具有足够的芯片内存以满足目标应用程序的需求。较大的MCU可能具有更多的处理能力,并且相应的片上SRAM或视频RAM可以运行更强大的算法并处理大量数据。相反,较小的MCU将带有较小的芯片内存。如果需要其他RAM,设计人员将使用外部RAM来补充系统,以充当扩展内存。人机界面(HMIS)可能需要大量的缓冲存储器来渲染图形。压缩技术有时用于在数据传输过程中克服此问题,以减少本地存储要求或系统带宽要求。这意味着将这些文件解压缩可能需要大量的刮擦记忆。在显示器上渲染这些高分辨率图像也需要额外的内存来缓冲图像。大
COVID-19 疫苗的研发有助于限制疫情的蔓延,过去两年来,疫情夺走了数百万人的生命。Moderna 和 Pfizer 的 COVID-19 疫苗是第一批使用 mRNA 技术生产的疫苗。此后,其他制造商也利用腺病毒载体、全灭活冠状病毒和蛋白质亚基方法制造了自己的疫苗。鉴于 SARS-CoV-2 病毒的持续变异,COVID-19 疫苗的加强剂为公民,尤其是患有合并症的人提供了额外的保护。然而,疫苗和加强剂的普及面临障碍。本文献综述旨在分析世界各地不同人群对 COVID-19 加强剂的接受度。搜索的关键词包括“COVID-19 疫苗接种率或 COVID-19 加强针接种率”、“COVID-19 疫苗犹豫”、“COVID-19 加强针犹豫”、“反对 COVID-19 疫苗的原因”、“支持 COVID-19 疫苗的原因”和“COVID-19 疫苗接受度”(每个国家/地区)。其中包括 PubMed、伊利诺伊大学厄巴纳-香槟分校图书馆和 Google Scholar 索引的研究文章。尽管 COVID-19 加强针已被证明有效,但疫苗犹豫仍导致对主要疫苗和加强针的依从性不佳,从而减缓了对疫情的控制。疫苗犹豫的原因因国家/地区而异,接受度受到错误信息、政治环境和文化价值观的影响。最常见的原因包括对政府的不信任、缺乏安全信息以及对副作用的恐惧。由于资源分配问题,中低收入国家也推迟了新冠疫苗的接种,导致这些国家疫苗接种率落后于基准。新冠疫苗接种的未来尚不清楚,但疫苗强制接种和额外加强剂量是有可能的。确定这些政策可能产生的伦理影响将有助于最佳实施。
1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B. ); annabelchen@ntu.edu.sg(S.H.A.C.) 3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。1个新加坡Nanyang Avenue 639798的Nanyang Technological University的计算机科学与工程学院; Arumugam004@e.ntu.edu.sg 2社会科学学院(SSS),Nanyang Technological University,新加坡639818,新加坡; bhattacharya.sagarika7@gmail.com(S.B.); annabelchen@ntu.edu.sg(S.H.A.C.)3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o. ); jdesmon2@jhmi.edu(J.E.D。) 7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。3 Nanyang Technological University,新加坡637460的Nanyang Technology University的研究与开发中心,新加坡4神经影像学和介入放射学系,国家心理健康与神经科学研究所,印度班加罗尔560029,印度班加罗尔560029; drroseedawn@nimhans.kar.nic.in 5 560029,班加罗尔560029,美国心理健康与神经科学研究所神经生理学系; kaviudupa.nimhans@nic.in 6美国马里兰州巴尔的摩约翰·霍普金斯大学医学院; koishi@mri.jhu.edu(k.o.); jdesmon2@jhmi.edu(J.E.D。)7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.) †高级作家。 ‡同等贡献。7 Nanyang Technological University,新加坡637553,新加坡8号Nanyang Technology University,Nanyang Technitute of Nanyang Technological University,新加坡637553,新加坡 *通讯 *通讯:Rajankashyap6@gmail.com(R.K.) ctguan@ntu.edu.sg(c.g.)†高级作家。‡同等贡献。
需求是由于粘合材料不良,非平板粘合表面,奇数包装情况还是仅仅是由于对高可靠性的需求;通过正确使用辅助电线,通常可以大大提高线键互连的完整性。辅助电线定义为安全线,安全凸起或隔离针迹(又称凸起的针迹)。旧的待命安全线已经成为一项资产已有几十年了,但是,这被安全颠簸所取代,安全性需要较小的第二键终止区域。此外,僵持针迹(SOS)具有更多的应用程序,并且还具有许多侧面好处,可以将其纳入电路设计中,以获得更好的电线强度性能,更少的互连(死于死亡结合)和较低的环路。隔离针键键合涉及将球碰撞放置在电线互连的一端,然后将电线与另一个球放在互连的另一端,并在先前放置的球碰撞上缝线。这会导致几乎均匀的针键键互连到颠簸,并具有固有的针键键拉力强度的改善。SOS的另一种用途是反向键(在模具键垫上的颠簸上的针键键),通常会导致比标准前向线环的较低的环轮廓,并且环路更强,因为电线尚未在球上方退火(在热影响的区域)。实施SOS的主要障碍是视觉检查员的重新培训和质量部门的批准。
引言 2019 年底,中国武汉出现了一批原因不明的肺炎患者 [1]。随后,世界卫生组织(WHO)于 2020 年 2 月 11 日根据其术语宣布了这种新型冠状病毒肺炎的标准格式:2019 冠状病毒病(COVID-19)。目前,透皮给药系统使用最多的方法是外用药膏、透皮贴剂、皮下针。由于皮肤角质层的存在,作为分子的屏障,只有极少数分子能够到达作用部位,因此该方法中使用的大多数药物和药剂的效果都很低 [2]。因此,透皮给药系统得到了发展,出现了另一种称为微针的方法。微针是一种智能方法,也是一种新型的透皮给药系统,它增加了将药物输送到作用部位的潜力。它是一种高度为 10-2000 微米、宽度为 10-50 微米的微型针,可无痛地直接穿透真皮组织。微针可以输送不同大小和形式的分子。它被认为是一种药物和疫苗输送装置。它可以装入活病毒或灭活病毒疫苗、DNA 疫苗或抗原。空心微针在流感疫苗接种中得到广泛应用。微针有许多优点,因为它的给药可行且无痛,它增加了皮肤的渗透性,并能输送不同大小的药物和疫苗[3]。如今,许多研究已经注册,以研究微针的效果
成本降低是最近向CU线键合的主要驱动力,主要是AU线粘结。包装的其他成本降低来自基板和铅框架的新开发项目,例如预镀框(PPF)和QFP和QFN的UPPF降低了镀层和材料成本。但是,由于粗糙的smface饰面和薄板厚度,第二个键(针键键)在某些新的LeadFrame类型上可能更具挑战性。pd涂层的Cu(PCC),以通过裸铜线改善电线键合工艺,主要是为了提高可靠性并增强了S TCH键过程。需要进行更多的FTMDAMENTALS研究来了解粘结参数和粘结工具的影响以提高针迹键合性。在本研究中研究了Au/Ni/pd镀的四型扁平铅(QFN)PPF底物上直径为0.7 mil的PCC电线的针键键过程。两个具有相同几何形状但不同的s脸的胶囊用于研究Capillruy Smface饰面对针键键过程的影响。两种毛细血管类型是一种抛光的饰面类型,用于AU线键合,而颗粒•饰面毛细管具有更粗糙的smface fmish。比较铅(NSOL)ATLD SH01T尾巴之间的过程窗口。研究了过程参数的影响,包括粘结力和表SCMB扩增。过程窗口测试结果表明,颗粒毛细管具有较大的过程窗口,并且SH01T尾巴OCCTM的机会较低。在所有三个Pru·emeter套件中,颗粒状的毛细血管均显示出更高的粘结质量。较高的SCMB振幅增加了成功SS的机会 - 填充针键键的fonnation。ftnther比较了毛细血管smface饰面,3组参数se ttings ttings ttings ttings具有不同的键atld scmb a振幅ru·e测试。与抛光类型相比,Grrumlru·capillruy产生了更高的针迹拉力强度。开发了该过程的有限元模型(FEM),以更好地了解实验性OB使用。从TL1E模型中提取了电线和亚种界面处的电线的Smface膨胀(塑性脱节),并归因于粘附程度(键合)。该模型用于与不同的Smface饰面相连(键合)的实验观察。
摘要:DNA 疫苗与其他类型的疫苗相比具有固有的优势,包括安全性、快速设计和构建、易于制造和快速生产以及热稳定性。然而,通过针头和注射器输送的候选 DNA 疫苗的一个主要缺点是与 DNA 的低效细胞摄取相关的较差的免疫原性。这种摄取至关重要,因为目标疫苗抗原是在细胞内产生的,然后呈递给免疫系统。已经采用了多种技术来增强 DNA 疫苗的免疫原性和保护效力,包括物理输送方法、分子和传统佐剂以及基因序列增强。无针注射系统 (NFIS) 是一种有吸引力的替代方案,因为它可以诱导强大的免疫原性、增强的保护效力并消除针头。这些优势使该领域取得了里程碑式的成就,一种仅通过 NFIS 输送的针对 COVID-19 的 DNA 疫苗被批准在紧急情况下限制使用。在本综述中,我们讨论了 DNA 疫苗的物理递送方法,重点介绍了市售的 NFIS 及其安全性、免疫原性和保护效力。正如所讨论的,与针头和注射器相比,NFIS 递送的预防性 DNA 疫苗往往会诱导不低于电穿孔的免疫原性和增强的反应。
* 通讯作者:firsel1012@gmail.com 摘要 注射器接种疫苗的使用提高了儿童的免疫覆盖率。尽管如此,肺炎仍然是五岁以下儿童死亡的主要原因,占该年龄段死亡人数的 70% 以上。为了应对针头恐惧症等挑战,透皮给药系统为局部和全身给药提供了一种有前途的微创替代方案。本研究重点开发和评估一种用于儿童肺炎疫苗透皮给药的椰果-透明质酸纤维素微针制剂。研究包括制备椰果、纤维素悬浮液、微针制造以及随后的特性描述和有效性测试。结果表明,微针达到溶胀平衡,溶胀度为 1。扩散测试表明,90 分钟内药物释放率为 1.173%,穿透角质层。扫描电子显微镜 (SEM) 分析证实,Pin 12 的平均微针长度为 763.6 μm,宽度为 191.7 μm,表明其适合透皮应用。这些发现凸显了椰果透明质酸微针是设计精良且有效的肺炎球菌疫苗输送平台,为改善儿科免疫接种和应对儿童医疗保健中的关键挑战提供了一种新颖的解决方案。关键词:药物输送系统、微针、椰果、PCV-13(肺炎球菌结合疫苗-13)
兼容 Quadrax 和 PC 尾部 Quadrax 触点 ..........23 • Quadrax 转换和差分 Twinax 转换适配器 ....24-26 • 差分 Twinax 转换适配器 ..............27 • 微型 D-Twinax 转换适配器 .............28-30 • 插入 MIL-DTL-38999 系列 III 的布置。.......31、32 • 如何订购带 Quadrax 100 欧姆触点的 38999 系列 III。...33 • 同轴触点。......................34-37 • 匹配阻抗同轴接触 ...............38 • 同轴接触件的典型接触件安装说明 ......39 • 高频接触件(DC 至 40 GHz) ........。。。。。40 • 双轴触点。。。。。。。。。。。。。。。。。。。。。。41-43 • 三同轴触点。。。。。。。。。。。。。。。。。。。。。...44 • 同轴、双轴和三轴 PC 尾部触点 .............45-47 • 插入 MIL-DTL-38999 系列 III 模式,包含同轴、双轴和三轴触点 ...。。。。。。。。。。。。。。。。。。48-50
https://inmodemd.com/technologies/technologies-fractora/ 8. Thomas WW, Bloom JD。颈部塑形和下颌脂肪治疗。J Drugs Dermatol。2017;16(1):54-57。 9. Cunha KS, Lima F, Cardoso RM。注射脱氧胆酸减少下颌脂肪的疗效和安全性:随机对照试验的系统评价和荟萃分析。Expert Rev Clin Pharmacol。2021;14(3):383-397。 10. InMode Aesthetics。Morpheus8。2022。2022 年 2 月 5 日访问。https://www.inmodemd.co.uk/morpheus8 11. Alexiades M. 微针射频。北美面部整形外科临床。2020;28(1):9-15。12. Dayan E、Rovatti P、Aston S、Chia CT、Rohrich R、Theodorou S。多模式射频应用治疗下脸部和颈部松弛。Plast Reconstr Surg Glob Open。2020;8(8):e2862。13. Demesh D、Cristel RT、Gandhi ND、Kola E、Dayan SH。射频辅助脂肪分解与射频微针治疗面部整形术后过早出现的下颌和颈部松弛。J Cosmet Dermatol。2021;20(1):93-98。14. Lee SJ、Goo JW、Shin J 等人。使用分段微针射频治疗18名韩国患者炎症性寻常痤疮。皮肤病学外科。2012;38(3):400-405。15. Hellman J. 分段射频消融设备治疗寻常痤疮和相关痤疮疤痕的回顾性研究。化妆品皮肤病学应用杂志。2015;5(4):311-316。16. Hellman J. 分段射频消融治疗寻常痤疮和相关痤疮疤痕的长期随访结果。化妆品皮肤病学应用杂志。2016;6(3):100-104。17. Kim ST,Lee KH,Sim HJ,Suh KS,Jang MS。点阵射频微针治疗寻常痤疮。《皮肤病学杂志》。2014;41(7):586-591。18. Shin JU, Lee SH, Jung JY, Lee JH。点阵微针射频装置与点阵二氧化碳激光治疗在痤疮患者中的分割面部比较。《美容激光治疗杂志》。2012;14(5):212-217。19. Juhasz MLW, Cohen JL。微针治疗疤痕:临床医生的最新资讯。《临床美容投资皮肤病学》。2020;13:997-1003。20. Faghihi G, Poostiyan N, Asilian A 等人。分段式微针射频治疗与不加皮下切除术治疗萎缩性面部痤疮疤痕的疗效:一项随机分段式面部临床研究。J Cosmet Dermatol。2017;16(2):223-229。21. An MK、Hong EH、Suh SB、Park EJ、Kim KH。分段式微针射频治疗与局部聚乳酸联合治疗