作为能源转换和存储设备,对可充电电池的需求正在增长。1–5如今,可充电金属离子电池在全球经济的可持续发展中起着重要作用。 在普通的金属离子电池中,锂离子电池是能源存储的主导媒介,可能会促进间歇性能源的可持续存储。 但是,电动汽车的蓬勃发展和大规模的锂离子电池应用使人们担心李为储备。 在很重要的情况下,na很丰富且便宜。 最近,研究人员广泛考虑了Na-ion电池的出现。 开发具有较长循环寿命的NA电池,并且没有记忆效应具有重要的战略意义。 NA电池的电极投影和电池组装过程与LI电池没有明显的差异。 尽管能量密度低于LI电池,但NA电池对于大规模储能应用而言更为优势。 但是,较大的离子半径是NA电池的基本问题。 LI +和Na +之间离子半径的差异导致NA电池的性能低于LI电池。 我们需要找到适合NA电池的新电极材料。 最近的研究已经提出了一种预测分层Na +氧化物构型的简单方法,该方法的效果已通过验证了其效果。1–5如今,可充电金属离子电池在全球经济的可持续发展中起着重要作用。在普通的金属离子电池中,锂离子电池是能源存储的主导媒介,可能会促进间歇性能源的可持续存储。但是,电动汽车的蓬勃发展和大规模的锂离子电池应用使人们担心李为储备。在很重要的情况下,na很丰富且便宜。最近,研究人员广泛考虑了Na-ion电池的出现。开发具有较长循环寿命的NA电池,并且没有记忆效应具有重要的战略意义。NA电池的电极投影和电池组装过程与LI电池没有明显的差异。尽管能量密度低于LI电池,但NA电池对于大规模储能应用而言更为优势。但是,较大的离子半径是NA电池的基本问题。LI +和Na +之间离子半径的差异导致NA电池的性能低于LI电池。我们需要找到适合NA电池的新电极材料。最近的研究已经提出了一种预测分层Na +氧化物构型的简单方法,该方法的效果已通过
可再生能源转型需要储能技术来实现电网平衡和运输。锂离子电池已被广泛用于这些应用,但由于地缘政治紧张局势导致的供应风险促使人们寻找不太依赖关键原材料的替代化学方法。由于钠的相对丰富及其制造工艺与锂离子电池相似,钠离子电池作为有前途的后锂化学技术而备受关注。这项工作估算了通过多物理场建模优化的用于能源或电力应用的电池生产钠离子电池组的成本。这项研究复制了 COMSOL Multiphysics® 文献中袋式钠离子电池的多物理场模型。该模型确定了在 0.1C 至 10C 放电率下电池中使用的最佳活性材料,以最大化能量密度。然后使用阿贡国家实验室的电池性能和成本 (BatPaC) 模型确定由优化电池生产的电池组的成本,该模型考虑了材料和制造成本。优化结果表明,能量电池具有更厚的电极和更低的孔隙率(0.1C 时阳极厚度为 217 μm,孔隙率 0.11,阴极厚度为 237 μm,孔隙率 0.10),从而使单位质量的活性物质含量最大化。动力电池具有更薄的电极和更大的孔隙率,以最大限度地降低电阻(10C 时阳极厚度为 58 μm,孔隙率 0.32,阴极厚度为 63 μm,孔隙率 0.31),从而减少大电流下的能量损失。此外,我们比较了钠离子电池能量应用和动力应用的计算生产成本,强调了影响价格的重要参数。该模型观察到,从能量电池过渡到动力电池时,每千瓦时总材料成本增加了 26.42%。该模型还可以通过考虑不同形式的具有不同阴极和阳极化学性质的钠离子电池及其在不同用例中的应用来完善。
图 3. 含 GPE 陶瓷的物理化学性质。 (a) 由 PVDF-HFP 和 Al 2 O 3 纳米粒子通过路易斯酸碱分子间键合形成的准固态聚合物示意图。 (b) GPE 的电解质吸收分析与 A 2 O 3 含量的关系。 经许可复制。 96 版权所有 2020,Wiley-VCH。 (c) 具有钠离子传导路径的复合混合固体电解质 (HSE) 的模型表示。 (d) 离子跳跃和增塑剂离子传输对电导率和 Na 迁移数的贡献图。 (e) 复合固体膜、醚基液体电解质和 HSE 的热重分析 (TGA) 结果。 经许可复制。 98 版权所有 2015,皇家化学学会。 (f) 所得 GPE 薄膜在室温下的离子电导率,通过改变填料含量进行改性。 (g) 离子电导率与温度的关系。 (h)GPE-0 和 GPE-4 薄膜的线性扫描伏安曲线。经许可转载。99 版权所有 2021,爱思唯尔。
锂离子电池(LiBs 1 )被广泛应用于各个领域,但其原材料依赖于稀土金属,而稀土金属的产地在世界各地分布不均。近年来,电动汽车销量的增长和乌克兰危机导致锂等锂离子电池主要原材料的价格飞涨,降低材料采购风险在下一代电池的开发中显得至关重要。自 1980 年代以来,钠离子电池(以下称为 NiBs 2 )的研发就一直在进行,但由于 NiB 在能量密度 3 和其他性能特性方面不如 LiB,因此并未得到广泛应用。但是,随着上述市场环境的变化,NiB 作为一种有前途的下一代电池候选材料开始受到关注,因为其主要原材料钠在地壳中的储量是锂的 1,000 倍,而且不会像锂那样在特定国家和地区分布不均。 BNEF 4 在 2021 年底发布的《全球储能展望》中指出,到 2030 年,NiB 可能会发挥重要作用。
摘要 合金材料(如硅、锗、锡、锑等)具有高容量、合适的工作电压、地球资源丰富、环境友好和无毒等特点,是下一代锂离子电池(LIBs)和钠离子电池(SIBs)有前途的负极材料。虽然最近报道了一些有关这些材料的重要突破,但它们在合金化/脱合金过程中剧烈的体积变化会导致严重的粉碎,从而导致循环稳定性差和安全风险。虽然合金的纳米工程可以在一定程度上缓解体积膨胀,但仍存在其他缺点,例如初始库伦效率和体积能量密度低。由纳米颗粒和纳米孔组成的多孔微尺度合金继承了微米和纳米特性,因此多孔结构可以更好地适应锂化/钠化过程中的体积膨胀,从而释放应力并提高循环稳定性。本文介绍了多孔材料的最新进展
本文已接受发表并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/adma.202201446 。
b'abstract:钠离子电池(SIBS)是一种有前途的网格级存储技术,因为钠的丰度和低成本。为SIBS开发的开发是必须影响电池寿命和容量的,因此必须开发新的SIBS。目前,六氟磷酸钠(NAPF 6)用作基准盐,但具有高度吸湿性并产生有毒的HF。This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B- (hfip) 4 ] \xc2\xb7 DME (hfip = hexafluoroisopropyloxy, O i Pr F ) and Na[B(pp) 2 ] (pp = perfluorinated pinacolato, O 2 C 2 - (CF 3 ) 4 ) have出色的电化学性能。[B(pp)2]阴离子也表现出对空气和水的高耐受性。这两种电解质都比常规使用的NAPF 6具有更稳定的电极 - 电解质界面,如阻抗光谱和环状伏安法所示。此外,它们具有更大的循环稳定性和与NAPF 6的SIBS相当的能力,如商业袋细胞所示。
摘要现在的电能存储很重要,因为它受人力需求的增加影响,并且电池是正在开发的储能。此外,计划用钠离子电池和丰富的钠元素及其经济价格与锂相比,将锂离子蝙蝠teries切换为主要点。主组件阳极和阴极对钠电池性能具有重大影响。本评论简要描述了钠电池的组件,包括阳极,阴极,电解质,粘合剂和分离器,而钠原材料的来源对于材料合成或安装最重要。海盐或NACL具有潜在的能力作为钠电池阴极的原材料,并且在阴极合成过程中使用海盐的使用可以降低生产成本,因为盐也非常丰富且环保。使用Na 2 Co 3的阴极(由NaCl独立于NaCl合成)后可以节省约16.66%的16.66%,并且用NaCl独立合成后可以用NaCl合成钠金属,因为计算后可以节省约98%,因为钠金属被归类为昂贵的问题。
至关重要。[1–3] 人们做出了巨大研究努力,致力于开发新型电池材料,以提高循环寿命、安全性、能量密度和功率密度[4,5],同时研究也集中于理解可以替代主要液体电解质锂离子电池技术的新型电池化学。[6–10] 钠离子技术已成为最有前途的电池应用之一。[11–15] 有趣的是,虽然人们的注意力集中在某种特定的电池化学上,这种化学能使能量密度提高一个数量级[16,17],或在比容量或工作电压方面优于目前可用的电活性材料的特定电极材料上[18–20],但人们往往忽视电池界面在电池的安全性、功率能力、锂沉积物形态、保质期和循环寿命方面发挥的关键作用。[21]