微处理器的数据通过两线总线接口和TM1640 通信,在输入数据时当CLK 是高电平时,DIN 上的信号必须 保持不变;只有CLK 上的时钟信号为低电平时,DIN 上的信号才能改变。数据的输入总是低位在前,高位在后 传输.数据输入的开始条件是CLK 为高电平时,DIN 由高变低;结束条件是CLK 为高时,DIN 由低电平变为高 电平。
三种不同直径和材质的导管配置(3 英寸钢、3 英寸铝和 1-1/2 英寸钢)和两个通用管钢支撑构件(一个 2 英寸和一个 4 英寸),每个包覆的标称厚度为 3/8 英寸或 5/8 英寸Thermo-LagO 330-1 和本文所述的各种升级均根据田纳西河谷管理局测试计划 RD 328886 进行评估,该评估主要基于美国保险商实验室公司 (UL) 主题 1724“电路保护系统防火测试调查大纲”的要求,第 2 期,日期为 1991 年 8 月,由 TVA 关于防火测试的立场解释标准(见附录 B)。仅发现 1-1/2 英寸导管配置符合这些文件对 60 分钟耐火期的要求。2 英寸和 4 英寸管钢支撑构件均支持使用 18 英寸规则。
时序基准发生器是一个 8 级递增计数器 , 可以精确的产生时基。看门狗 ( WDT )是由一个 时基发生器和一个 2 级计数器组成,它可以在主控制器 或其它子系统处于异常状态时产生中断。 WDT 计数溢出时产生一个溢出标 志,此标志可以通过命令输出到 /IRQ 脚 ( 开漏输出 ) 。时序基准发生器和 WDT 时钟的来源。时基和看门狗共用 1 个时钟源,可配置 8 种频率: f WDT = f sys/2 n ( n=0~7 )
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。64 图 4。67 图 4。28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性也随之增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了侵蚀速率随~~fy ~ 图 3 的增加而增加的趋势。7:氮化和碳化样品的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征 (1) - (7) 与装置照片中的特征相对应。46 图 4.2:侵蚀装置的照片:(1)气体火焰,(2)预热室,(3)侵蚀进料器,(4)加速管。47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b) 测试部分插入的样品室 (5)。48 图 4.4:冷却部分 (6) 连接到旋风分离器和排气管 (7)。可以看出排气管如何有效增加旋风出口管的高度。49 图 4.5:旋风分离器的示意图,显示重要尺寸。6:200°G 运行条件下,仪器上各个位置的温度与时间的关系图。7:500°G 运行条件下,仪器上各个位置的温度与时间的关系图。68 图 4.8:几种不同空气供应压力下,样品最终温度与气体调节器供应压力的关系图。引用的气压是压力调节器上显示的单位,其中 1 bar= 高于大气压 1 个大气压,即2.026x10 5 N.m· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下的颗粒和气体速度与供应压力的关系
随函附上第二份进度报告 SSC-108,题为“通过范德维恩缺口慢弯试验评估船板钢的缺口韧性性能”,由 E. A. Imbembo 和 F. Ginsberg 撰写,项目为 SR-141,“一英寸以上的半熟练钢”。”
腐蚀速率测量和案例研究。所有论文都涉及这些主题中的多个主题和其他几个主题;但是,主要重点是主要标题领域。几篇论文讨论了新的评估方法或用新方法看待旧方法,在某些情况下,这些方法存在争议。编辑鼓励读者根据论文中提供的证据和所包含的参考文献自行评估结论。总体而言,所呈现的论文提供了广泛的概述,可用于现场钢筋混凝土的评估。
穿透金属装甲的射弹会使材料处于复杂的应力状态,从而导致装甲失效。金属装甲可能发生多种类型的失效(Backman 和 Godsmith,1978 年),但许多研究都集中于剪切塞失效机制,这是导致装甲钢的抗弹性能降低的原因。剪切塞被归类为低能量失效,通常由钝头射弹或钝碎片的撞击引起(Cimpoeru,2016 年)。对装甲钢目标进行的许多微观结构观察表明目标内部存在绝热剪切带(Solberg 等人,2007 年)。通常,如果存在高应变率载荷下局部塑性变形的有利条件,则可能发生绝热剪切。当冲击引起的变形发生得如此之快,以致热软化超过目标材料的加工和应变速率硬化时,变形将局限于强烈剪切的狭窄区域,即绝热剪切带 (ASB)。根据研究 (Guo et al ., 2020),ASB 的形成步骤如下:应力崩塌、应变局部化、温度升高、剪切带起始和裂纹形成。给定材料中存在 ASB 的必要条件是发生热机械不稳定性,表现为塑性流动应力随变形值的增加而降低。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ 。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。28 图 3.5:侵蚀速率与涂层厚度的图表显示随着涂层厚度的增加,抗侵蚀性增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了随着 ~~fy ~ 的增加,侵蚀速率呈增加趋势
装甲钢的机械冶金学 执行摘要 装甲钢历来在应对各种战场威胁时都具有最佳的弹道性能,并且仍然是极具竞争力的装甲材料。然而,人们对装甲钢的弹道和结构性能最重要的因素了解甚少。本报告旨在纠正这一问题,并为装甲设计师和装甲车辆能力获取和质量保证工程师提供概述参考文件。解释了装甲钢的机械性能(特别是其机械冶金学)与弹道性能之间的关系,其中这种性能主要由材料强度、硬度和高应变率行为决定。还讨论了其他重要主题,例如韧性;绝热剪切现象;结构开裂;双硬度和电渣重熔装甲钢,以及装甲钢规格和标准。人们认为,装甲钢不仅会继续改进,而且在未来很长一段时间内仍将主导车辆装甲设计。