可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
由于燃料成本上升和环境法的出台,汽车行业被迫制造更轻、更省油的汽车。当采用铝基复合材料等轻质金属来减轻汽车总重量时,燃料消耗也会减少。铝基复合材料因其卓越的机械和摩擦学特性而被广泛应用于汽车和航空运输业。本文讨论了铝基复合材料在汽车应用中的重要性及其阻尼特性。由于工程应用需要机械稳定性和性能,因此振动是不可接受的。阻尼能力是指材料在周期性应力作用下管理机械振动的能力。为了减少当今环境中的机械振动,需要具有卓越机械和阻尼能力的材料。复合材料是一种更好的选择,因为它们具有更好的机械性能和阻尼能力。文献深入探讨了影响铝基复合材料的不同方面以及汽车应用中阻尼研究的必要性。最后,利用 VOSviewer 以科学计量学方法报告了铝基复合材料阻尼特性的研究进展。Scopus 引擎搜索发现 1329 篇与阻尼和振动研究相关的文献。随后,对 2010 年至 2022 年的 628 篇研究文献进行了专门的统计分析。
摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
增材制造 (AM) 可以制造出传统制造方法无法实现或不经济的复杂结构。其独特的功能推动了多种打印技术的出现,并引发了对材料采用的广泛研究,特别是铁基、钛基和镍基合金。同时,铝作为一种轻质结构材料,其凝固范围大、反射率高,大大降低了铝与 AM 的兼容性。不兼容性的根源在于铝在 AM 的快速循环热条件下的不稳定行为及其与激光的相互作用较差。这阻碍了基于激光的铝 AM 的发展,并加剧了目前中温范围内轻质结构材料的缺乏。铝基复合材料 (AMC) 具有作为热稳定轻质结构材料的巨大潜力,结合了铝基体的轻质特性和增强相的强度。然而,AMC 的制造主要采用传统方法,仅实现中等体积分数的增强,同时与 AM 相比零件复杂性有限。为了应对这些挑战,原位反应打印 (IRP) 作为一种新型 AM 方法被采用,利用不同元素粉末混合物的反应产物来制造具有超高体积分数金属间增强体的 AMC。在本研究中,系统地研究了钛添加到元素铝原料粉末中对材料加工性、微观结构特征和力学性能等不同方面的影响。结果表明,与现有的 AM 铝合金和其他 AMC 相比,IRP 可以克服 AM 与铝之间的不兼容性,并生产出具有特殊体积分数增强体和出色刚度增强的 AMC。
研究了铸态和T6态金属盐反应制备的TiB2颗粒增强A356基复合材料的组织与力学性能。对制备的复合材料的显微组织观察表明,原位生长的TiB2颗粒形状规则,在A356基体中分布均匀,A356基体与TiB2颗粒之间有清晰的界面。对铸态和T6态制备的复合材料的力学性能进行详细分析表明,随着A356基体中原位TiB2颗粒质量分数(wt%)的增加,制备的复合材料的极限拉伸强度和杨氏模量增大,但随着TiB2颗粒质量分数的增加,制备的复合材料的泊松比减小。与A356合金相比,随着TiB 2 颗粒质量分数的增加,复合材料的杨氏模量提高了10.8%,泊松比降低了3.2%;随着TiB 2 颗粒质量分数的增加,复合材料的屈服强度先降低(当TiB 2 颗粒质量分数小于1%时)后升高,而伸长率和断面收缩率则先升高后降低。此外,T6热处理可以细化晶粒,有效提高复合材料的力学性能。
陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
摘要在这项研究中,厚度为50-100 nm的石墨烯纳米板(GNP)已被用来改善A360合金的机械和摩擦学特性,因为它们的非凡机械性能和固体润滑性性质。为了研究摩擦学特性,在各种温度下进行了圆盘测试,包括室温(RT),150 C和300 C。纳米复合材料的磨损行为的改善被称为磨损过程中暂时形成的硬质量GNP的固体润滑膜,因此摩擦系数(COF)和体积损失大大降低。磨料 - 粘合剂,氧化和轻度至关重要分别是RT,150 C和300 C的主要磨损机制。总体而言,结果表明,通过铸造方法与机械搅拌和超声化相结合制造的纳米复合材料具有有希望的磨损性能,尤其是在升高的温度下。这可能表明这些开发的材料可能是需要在需要高温磨损性能的工程应用中使用的潜在候选者。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板