摘要:本文使用四种不同的多标准决策方法 (MCDM) 并比较材料的排序,从三种不同的钢和三种铝基材料中选出最适合铁路货车的材料。我们分析了:双相 600 钢、相变诱导塑性 (TRIP) 700 钢、孪生诱导塑性 (TWIP) 钢、铝 (Al) 合金、Al 6005-T6 和 Al 6082-T6 以及具有闭孔的多孔铝结构。使用了四种不同的 MCDM 方法:VIKOR、TOPSIS、PROMETTHEE 和加权聚合和乘积评估法 (WASPAS)。MCDM 分析中使用的关键材料特性包括:密度、屈服强度 (YS)、抗拉强度 (TS)、YS/TS 比、杨氏模量 (YM)、成本和耐腐蚀性 (CR)。研究结果表明,根据设置标准,铝及其合金被证明是最合适的材料。先进钢材也获得了良好的排名,使其成为有效的选择,仅次于轻质铝合金。根据所使用的 MDCM 方法,多孔铝表现不佳,主要是因为多孔结构通常表现出明显较低的强度。
(Benson、Downes 和 Dow 2011;J. Paik 等人 2005;J. Paik 2009;J. Paik 等人 2007;Rigo 等人 2003),拉伸设计方法一直被忽视。无法有效预测拉伸连接的强度和延展性,对使用现代极限状态设计开发轻质铝结构具有严重影响。Smith 方法等渐进式破坏方法需要预测结构元件的载荷-缩短和载荷-延伸曲线,但我们缺乏任何切实可行的方法来预测焊接铝结构的载荷-延伸曲线。直接应用有限元法已被证明是一种困难的方法,需要比板厚度小得多的网格离散化(Wang 等人 2007;Dørum 等人 2010)。此外,如果要在模型中使用壳单元,则需要自定义单元丰富。除了学术研究团体或专业咨询机构外,此类技术尚未实用。迄今为止开发的技术仅在土木工程结构常见的细节类型上得到验证。因此,海洋结构工程师目前缺乏实用工具和实验数据来设计完全考虑焊缝不匹配影响的结构。
15. 船舶结构委员会及其成员机构赞助的补充说明 16. 摘要 本文提出了一种基于固有应变理论和有限元法的加筋曲板焊接变形预测方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如考虑按制造阶段进行的焊接顺序的角变形、面内收缩、纵向和横向弯曲变形。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。用弹性分析计算了等效载荷作用下的曲线加筋板焊接变形,并与试验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和密集有限元分析的结果有很好的一致性。事实证明,所提方法具有很高的效率和准确性。该方法可以预测实际船舶的弧形双底分段的焊接变形。该方法高效、准确,为预测结构形状复杂程度较高的实际船舶分段焊接变形提供了有力的解决方案。17. 关键词 铝结构,海洋结构,铝设计,铝加工
15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要 本研究的目的是为通过搅拌摩擦焊制造的 5000 系列和 6000 系列铝加筋板结构开发机械屈曲破坏试验数据库,并在焊接引起的初始缺陷和极限抗压强度性能方面将这些结构与通过熔焊制造的类似铝板进行比较。讨论了与熔焊和搅拌摩擦焊程序相关的趋势或好处。以下是这些讨论的摘要。• 发现搅拌摩擦对接焊接铝合金的屈服强度和极限拉伸强度与熔焊铝合金相当甚至更好。• 搅拌摩擦焊接引起的初始缺陷往往比熔焊引起的缺陷小。因此,搅拌摩擦焊接工艺在这方面的优势显而易见。• 搅拌摩擦焊接铝结构的极限强度性能比熔焊铝结构高 10-20%。这意味着,只要防止分层,搅拌摩擦焊接工艺在极限抗压强度性能方面肯定优于熔焊工艺。• 然而,所有搅拌摩擦焊接测试结构在达到极限强度之后甚至之前都在焊接区域出现分层。这表明,熔焊工艺在焊接区域的抗压强度性能方面优于搅拌摩擦焊接工艺。• 再次确认非线性有限元方法计算很大程度上取决于所应用的结构建模技术。
15.船舶结构委员会及其成员机构赞助的补充说明 16.摘要 本文提出了一种基于固有应变理论结合有限元法预测加筋曲板焊接变形的有效方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如角变形、面内收缩、纵向和横向弯曲变形,并考虑按制造阶段进行的焊接顺序。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。通过弹性分析计算了等效载荷下的曲板加筋焊接变形,并与实验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和有限元分析结果有较好的一致性。实践证明,所提方法具有较高的效率和准确性。用所提方法可以预测实船曲型双底分段的焊接变形。本方法高效、准确,为预测结构形状复杂度较高的实船船体分段焊接变形提供了有力的解决方案。17.关键词 铝结构 海洋结构 铝设计 铝加工
本文提出了一种分析模型,该模型使用历史损伤尺寸数据来推断造成一定损伤的物理撞击物特性(尺寸和能量)。维护任务在操作中是由于撞击而发生的,但在大多数情况下,事件中造成的损伤来源仍然未知。因此,通过从损伤类型和严重程度相对于撞击物类型的分布中推断出造成某种损伤的原因,维护人员可以更好地了解给定撞击物源的预期结果。开发的模型在局部变形和整体板块挠度之间引入了一个新型过渡变形区域,可以快速准确地预测撞击事件。使用已知的铝结构特性和损伤尺寸,将损伤数据转换为撞击物数据。该模型应用于一个案例研究,使用了波音 777 机队的 120 个机身凹痕损伤尺寸(长度、宽度和深度)。结果表明,该模型可以推断出 94% 的考虑损伤的撞击器特性,撞击器能量和半径分别高达 240 J 和 110 mm。� 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
欠匹配铝焊缝的抗拉强度和延展性的实验量化 1. 目标。a. 本项目将通过实验测试具有欠匹配焊缝的铝制船舶结构连接细节,以更好地了解这些连接的能力,并创建测试数据库以供将来的设计方法验证。2. 背景。a. 铝结构可为许多船舶提供高达 50% 的结构重量节省潜力,从而降低燃料消耗并提高许多时间敏感或吃水受限应用的经济性。b. 设计铝结构的一个关键挑战是处理用于组装结构的欠匹配熔焊。与大多数钢材不同,船用铝合金在焊缝热影响区 (HAZ) 的强度会降低,达到原材料强度的 50%。然而,对焊接铝船舶结构的拉伸强度的研究很少。初步评估得出结论,目前的方法不足以设计复杂的连接。海洋工程和土木工程界已就此问题进行了更广泛的研究,但这些研究并未涉及海洋细节。c. 欠匹配焊缝的主要问题是,在极端拉伸载荷下,塑性变形会集中在欠匹配区域,导致这些区域出现高应变并最终发生延性失效。鉴于其余
摘要。汽车行业为降低汽车重量做出了巨大努力,以提高汽车燃油经济性和减少温室气体排放。结构轻质合金和制造技术的新创新使汽车制造商能够用更轻的铝结构取代传统钢材。然而,在下一代量产车的开发过程中,汽车制造商需要考虑大量的材料和厚度组合。此外,这些材料和结构的设计组合在车辆碰撞过程中不得损害车辆的完整性。随着廉价计算资源的普及,汽车制造商现在可以使用计算机模拟探索材料选择对下一代汽车耐撞性的影响。虽然这些模拟中的信息可以手动提取,但大量数据适合人工智能 (AI) 技术,这些技术可以更快地提取知识并提供更有用的解释,方便设计师和工程师。这项工作提出了一个使用人工智能辅助铝制车辆耐撞性设计周期的框架。使用有限元分析对皮卡车正面碰撞条件进行虚拟实验,以生成该方法的数据。虚拟实验中采用了不同的市售铝合金和厚度规格。使用一种高级循环神经网络来预测乘员碰撞脉冲响应的时间序列响应,这是用于评估安全性的关键耐撞性指标。这项工作重点介绍了汽车设计和工程师如何利用该框架来加速下一代轻型汽车的开发周期。
12. 赞助机构名称和地址 船舶结构委员会 美国海岸警卫队 (G-MSE/SSC) 2100 Second Street, SW Washington, DC 20593 14. 赞助机构代码 GM 15. 补充说明 由船舶结构委员会赞助。由其成员机构共同资助。 16. 摘要 本研究的目的是开发通过摩擦搅拌焊接制造的 5000 系列和 6000 系列铝加筋板结构的机械屈曲破坏试验数据库,并将这些结构与通过熔化焊接制造的类似铝板在焊接引起的初始缺陷和极限抗压强度性能方面进行比较。讨论了与熔化焊接和摩擦搅拌焊接程序相关的趋势或优势。以下是这些讨论的摘要。 • 发现摩擦搅拌对接焊接铝合金的屈服强度和极限拉伸强度相当于甚至优于熔化焊接铝合金。 • 搅拌摩擦焊接引起的初始缺陷往往比熔化焊接引起的缺陷小。因此,搅拌摩擦焊接工艺在这方面的优势显而易见。• 搅拌摩擦焊接铝结构的极限强度性能比熔化焊接铝结构高 10-20%。这意味着,只要能防止分层,搅拌摩擦焊接工艺在极限抗压强度性能方面肯定优于熔化焊接工艺。• 然而,所有搅拌摩擦焊接测试结构在达到极限强度之后甚至之前都在焊接区域出现了分层。这表明,熔化焊接工艺在焊接区域的抗压强度性能方面优于搅拌摩擦焊接工艺。• 再次证实,非线性有限元法计算在很大程度上取决于所应用的结构建模技术。 17. 关键词 铝加筋板结构,极限强度,搅拌摩擦焊,熔化焊,焊接引起的初始缺陷,屈曲破坏试验,非线性有限元法计算
弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 的研究人员开发出一种新型聚合物补片,它可以显著加速和简化以前费力、昂贵且耗时的受损轻型飞机部件修复过程。将这种可热成型、可回收的修补片压在受损区域,仅需 30 分钟即可完全固化。这种创新的纤维增强塑料用途广泛,可用于从航空到骨科等不同行业。修复轻型纤维复合材料部件(如用于飞机机翼、机身段、尾翼表面和舱门的部件)是一个费时、昂贵的过程,需要多个工作步骤。受损区域通常使用复杂的湿层压工艺或在表面应用纤维增强聚合物 (FRP) 或铝结构(称为双层)来修复。然而,这些方法需要较长的固化时间并需要额外的粘合剂。弗劳恩霍夫 IFAM 的研究人员现已开发出一种由动态聚合物网络(业内称为 vitrimers)制成的修补片,可将之前漫长而费力的修复过程缩短至 30 分钟。这种创新材料基于苯并恶嗪,这是一种新型热固性材料,也称为热固性材料,其真正特别之处在于,聚合塑料不会熔化,也不会像湿法层压中使用的传统树脂系统那样表现出其他行为。聚合物的动态网络过程使局部加热材料成为可能。完全固化的修补片在加热状态下可适应修复部位。在室温下,聚合物具有热固性,因此修补片不粘,储存时稳定。这节省了能源,因为修补片可以在室温下储存,不需要冷藏,从而降低了储存成本。修补片使用压力和热诱导交换反应应用于需要修复的轻质部件。它能够快速修复,30 分钟内完全固化。无需使用反应性危险材料,而传统树脂系统则必须如此。玻璃体特性使得可以在需要时移除补片,而不会留下任何残留物。“我们的无粘合剂、储存稳定的纤维增强补片可以直接修复受损的复合材料和混合结构。由于聚合物本质上是一种玻璃体,因此补片在储存过程中的表现类似于传统的热固性复合材料,但它也