对于任何状态 ρ 和 σ (其中后者不需要归一化)。相对熵是一个比冯·诺依曼熵更一般的熵量。它包含后者和其他信息测度,如互信息,作为特例。它可以看作是量子态之间的相异性度量,并用于定义各种重要量,如纠缠的相对熵 [6]。相对熵表征非对称假设检验的误差指数 [7] 或量化资源理论中的资源量 [8,9]。到目前为止,还没有证明量子相对熵的链式法则。这与经典情况形成了鲜明的对比,在经典情况下,相对熵(也称为 Kullback-Leibler 散度)存在链式法则 [10,定理 2.5.3]。对于一对离散随机变量 ( X, Y ),其字母为 X × Y ,我们有
其中 D reg ð E k F Þ ≔ lim n → ∞ ð 1 =n Þ D ð E ⊗ nk F ⊗ n Þ 。语句 (5) 意味着第一个不等式可以是严格的。根据摊销通道相对熵 (7) 的定义,这直接意味着 (6)。因此还需证明 (5)。为此,我们构造一个满足 (5) 的量子位上的两个迹保持完全正映射 E 和 F 的示例。考虑广义振幅阻尼通道 A γ ; β ð ρ Þ = P 4 i = 1 A i ρ A † i,其中 γ ; β ∈ ½ 0; 1 使用 Kraus 运算符 A 1 ¼ ffiffiffiffiffiffiffiffiffiffiffi 1 − β p ðj 0 ih 0 j þ ffiffiffiffiffiffiffiffiffiffi 1 − γ pj 1 ih 1 jÞ , A 2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi γ ð 1 − β Þ pj 0 ih 1 j , A 3 ¼ ffiffiffi β p ð ffiffiffiffiffiffiffiffiffiffi 1 − γ pj 0 ih 0 jþ j 1 ih 1 jÞ 和 A 4 = ffiffiffiffiffi γβ pj 1 ih 0 j 。对于两个通道 E = A 0.3;0 和 F = A 0.5;0.9,它们对应的 Choi 矩阵根据计算基础由下式给出
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
多元函数:多元函数的极限、连续性和可微性,偏导数及其几何解释,微分,复合函数和隐函数的导数,链式法则,雅可比矩阵,高阶导数,齐次函数,欧拉定理,调和函数,多元函数的泰勒展开式,多元函数的最大值和最小值 - 拉格朗日乘数法。单元 - V(5 个接触小时)
一元函数微积分:线性和二次近似、误差估计、泰勒定理、无穷级数、收敛测试、绝对和条件收敛、泰勒和麦克劳林级数。多元函数微积分:偏导数、链式法则、隐式微分、梯度、方向导数、全微分、切平面和法线、最大值、最小值和鞍点、约束最大值和最小值、曲线绘制、积分的几何应用、双重积分、面积和体积的应用、变量变换。常微分方程:一阶及高阶微分方程、线性微分方程。具有高阶常数系数、柯西微分方程、参数变异法、联立微分方程。图论:简介、术语、表示、同构、连通性、Wars Hall 算法、欧拉和汉密尔顿路径以及最短路径树。参考文献:
模块3[8L] 数列和级数:数列和级数收敛的基本概念;收敛检验:比较检验、柯西根检验、达朗贝尔比检验(这些检验的语句和相关问题)、拉贝检验;交错级数;莱布尼茨检验(仅语句);绝对收敛和条件收敛。 模块4[10L] 多元函数微积分:多元函数简介;极限和连续性、偏导数、三元以下齐次函数和欧拉定理、链式法则、隐函数的微分、全微分及其应用、三元以下雅可比矩阵最大值、最小值;函数的鞍点;拉格朗日乘数法及其应用;线积分的概念,二重和三重积分。模块 5[10L] 向量微积分:标量变量的向量函数,向量函数的微分,标量和向量点函数,标量点函数的梯度,向量点函数的散度和旋度,
我们开发了一个“半自动微分”框架,将现有的基于梯度的量子最优控制方法与自动微分相结合。该方法几乎可以优化任何可计算函数,并在两个开源 Julia 包 GRAPE.jl 和 Krotov.jl 中实现,它们是 QuantumControl.jl 框架的一部分。我们的方法基于根据传播状态、与目标状态的重叠或量子门正式重写优化函数。然后,链式法则的分析应用允许在计算梯度时分离时间传播和函数的评估。前者可以通过修改的葡萄方案非常高效地进行评估。后者通过自动微分来评估,但与时间传播相比,其复杂性大大降低。因此,我们的方法消除了通常与自动微分相关的高昂内存和运行时开销,并通过直接优化量子信息和量子计量的非解析函数,促进了量子控制的进一步发展,尤其是在开放量子系统中。我们说明并测试了半自动微分在通过共享传输线耦合的超导量子比特上完美纠缠量子门的优化中的应用。这包括对非解析门并发的首次直接优化。
模块 I(18 小时)- 矩阵初等变换 – 阶梯形式 – 通过简化为阶梯形式利用初等变换进行排序 – 利用初等变换解线性齐次和非齐次方程。向量的线性相关性和独立性 – 特征值和特征向量 – 特征值和特征向量的性质(不要求证明) – 线性变换 – 正交变换 – 对角化 – 利用正交变换将二次型简化为平方和 – 二次型的秩、指标、签名 – 二次型的性质 模块 2(18 小时) - 偏微分 偏微分:链式法则 – 齐次函数的欧拉定理陈述 – 雅可比矩阵 – 泰勒级数在二元函数中的应用 – 二元函数的最大值和最小值(不要求证明结果) 模块 3(18 小时) - 多重积分 笛卡尔和极坐标中的二重积分 – 积分阶数变换 – 使用二重积分计算面积 – 使用雅可比矩阵计算变量变换 – 笛卡尔、圆柱和球坐标中的三重积分 – 使用三重积分计算体积– 使用雅可比矩阵改变变量 – 简单问题。模块 4(18 小时) - 常微分方程 具有常数系数的线性微分方程 - 互补函数和特殊积分 - 使用参数变异法寻找特殊积分 - 欧拉柯西方程 - 勒金德方程 模块 5(18 小时) - 拉普拉斯变换 拉普拉斯变换 - 移位定理 - 变换的微分和积分 - 导数和积分的拉普拉斯变换 - 逆变换 - 卷积特性的应用 - 单位阶跃函数的拉普拉斯变换 - 第二移位定理(不需要证明) - 单位脉冲函数和周期函数的拉普拉斯变换 - 使用拉普拉斯变换解具有常数系数的线性微分方程。
MH1802 科学微积分 本课程旨在让学生掌握 数学知识和分析技能,使他们能够应用微积分技术(以及他们现有的数学技能)来解决适用的科学问题; 数学阅读技能,使他们能够阅读和理解基础和流行科学和工程文献中的相关数学内容;以及 数学交流技能,使他们能够有效和严格地向数学家、科学家和工程师介绍他们的数学思想。内容基础 (BAS) 数字类型;函数和图形;常用函数及其图形;重要的代数、三角、对数和指数恒等式;基本复数。微积分 (DIF) 极限;微分;微分技术;微分的应用;基本偏导数。积分 (INT) 积分;积分技术;对数、指数和反三角函数的微积分;积分的应用;微分方程 (DE) 基础;一阶常微分方程;二阶常微分方程;级数、序列和微分方程。MH1812 离散数学 学习目标 本课程介绍数学和计算机科学中常用的离散数学基本概念。内容 - 计数、排列和组合、二项式定理 - 递归关系 - 图、路径和电路、同构 - 树、生成树 - 图算法(例如最短路径、最大流)及其计算复杂度、大 O 符号 MH2100 微积分 III 学习目标 这是微积分系列中的最后一门课程。本课程介绍多变量微积分。内容 参数方程、极坐标。向量值函数、向量值函数微积分、立体解析几何。多变量函数、极限、连续性、偏导数、可微分性和全微分、链式法则、隐函数定理。方向导数、梯度、拉格朗日乘数。二重积分、表面面积、三重积分。线积分、格林定理、曲面积分、高斯散度定理、斯托克斯定理。