图2:从基于物理的电池模型中检索的特征的SOH估计方法。这些技术的缩写项是库仑计数(CC),电化学阻抗光谱(EIS),开路电压(OCV),Kalman滤波器及其扩展(KF)和遗传算法(GA)。
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
1。需求:进行了市场分析以确定需求。2。方法:解释了满足确定需求的独特方法。3。益处:通过生命周期评估(LCA)(LCA)的技术经济评估(TEA)和环境影响评估用于确定主要的好处和其他比较方面。4。竞争:讨论了欧盟和SA中的竞争力量。
电动汽车(EV)的电池生产需要一个能够支持各种原材料的供应链。锂,镍,锰和钴对于主要依赖于磷酸锂(LFP)和镍镍锰氧化物(NMC)载体的主要锂离子电池(LIB)技术特别重要。从地理上讲,全球供应非常依赖中国,预计竞争将加剧。鉴于此,有关全球竞争如何在公司层面表现出来的问题以及地区是否通过国内公司占据供应链中的份额仍未得到解答。通过分析每个供应链行业和各自的原材料背后的公司来解决这些问题。结果表明,中国,欧洲和美利坚合众国(美国)在整个供应链中表现出最明显的所有权,从而获得了采矿业中最大的外国股份。总体而言,中国在12个研究领域中总共有11个领先,其LFP生产的峰值高于98%。这种优势,再加上NMC生产中韩国,欧洲和日本的大量产出,后者代表了减轻供应链漏洞并实现更大的增长和主权的可行目标。
摘要 非洲农村地区的社会经济发展离不开适当的基础设施。而其中的关键就是电气化。尽管有各种国家和国际活动和扩展计划,以及各种各样的参与者,但这些活动的实施进展缓慢。为了向偏远地区供电,近年来离网系统技术变得越来越普遍。在本文中,我们将介绍使用光伏系统与 85kWh 二次锂离子电池 (LIB) 结合作为离网混合系统为坦桑尼亚维多利亚湖的一个岛屿供电作为社会经济案例研究。该离网混合系统每天平均能够提供 42.31kWh 的能源,项目中成功连接的关键基础设施(如当地医院和学校)的每日需求量为 18.75kWh。规模年产量为 15,443.16kWh,足以为私人家庭以及当地渔业提供电力供应。假设预期寿命为 15 年,所述系统从第 4 年开始摊销。此外,考虑到全球电动汽车的快速发展和二手锂离子电池的预期回报,该项目还应成为电池的二次生命场景。与传统柴油发电机解决方案相比,经济和生态评估表明使用二次生命锂离子电池是一种解决方案。评估中包括对健康方面的考虑。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
I. 引言 全球对清洁和可再生能源的需求能够最好地应对日益增长的燃料消耗问题,这促进了储能系统的使用。文献中介绍了具有不同特性和容量的不同类别的电池 [1]–[3]。锂离子电池的高能量密度和重量轻使其成为储能市场的主导者,尤其是在汽车应用方面 [4]。锂离子电池的安全运行需要管理其在充电和放电过程中的温度变化。高温会损坏储能系统甚至引起爆炸,而低温会对电池造成不可逆转的损坏 [5]。因此,为确保锂离子电池的正常运行,应将温度保持在 15°C 至 35°C 的最佳范围 [6]。能够散发产生的热量的热管理系统对锂离子电池至关重要。适当的冷却方法有助于管理电池的热行为,提高安全性和使用寿命。它确保电池组内部温度分布均匀,避免局部性能下降,并散发产生的热量,以保持电池组内部温度处于最佳范围 [7]。适当的冷却方法可以提高安全性并延长电池寿命。