入侵物种是现在发生在其自然范围之外并威胁着有价值的环境,农业,海洋和社会资源的物种。入侵物种包括杂草,陆地和海洋脊椎动物和无脊椎动物,以及引起疾病的生物。澳大利亚入侵物种的例子包括野猫,欧洲红狐狸,甘蔗蟾蜍,兔子,欧洲鲤鱼,chytrid真菌,默特尔锈病,默特尔锈,布法尔草和甘巴草。本地物种有时对我们的本地生物多样性也可能是有问题的 - 例如,嘈杂的矿工对其他林地鸟类社区的影响,袋鼠和袋鼠等本地过多的宏观动物的影响,以及长刺海盘对本地kelp森林的影响。侵入性和有问题的本地物种通过捕食来减少生物多样性,与本地物种竞争食物和栖息地的竞争,带来疾病以及以排除本地物种的方式改变物理环境。污染
在谷物价值链中,影响谷物加工、生产、质量和安全的关键因素之一是真菌病原体和真菌毒素的发生。准确鉴定这些真菌病原体对于有效的疾病管理实践至关重要。本研究有三个项目目标。第一个目标是开发一种快速鉴定引起谷物镰刀菌穗枯病 (FHB) 和锈病的真菌的方法。第二个目标是调查 FHB 病原体种群变化的原因,包括禾谷镰刀菌的优势地位以及产生 3-乙酰脱氧雪腐镰刀菌烯醇 (3ADON) 毒素的基因型相对于其他真菌种类和产生 15-乙酰脱氧雪腐镰刀菌烯醇 (15ADON) 毒素的基因型。最后一个目标是研究小麦对不同禾谷镰刀菌分离株的宿主抗性。利用 MALDI-TOF 质谱法,通过基于蛋白质的物种特异性生化谱,成功地实现了真菌的快速鉴定,这是一种快速且经济有效的微生物鉴定方法。该方法已通过从感染的大麦、燕麦和小麦中分离出的镰刀菌和锈病菌种进行了验证。目前正在通过研究导致禾谷镰刀菌 3ADON 基因型占主导地位的因素来解决第二个目标。对产生 15ADON 和 3ADON 的两个代表性禾谷镰刀菌分离株进行的比较基因组学分析,已鉴定出一组可能与产生 3ADON 的基因型占主导地位有关的基因。CRISPR-Cas9 基因编辑正被用于在这些基因内创建靶向突变,并将产生的突变体与野生型分离株在体外和体内进行比较。最终目标是测试 5 个小麦品种(AAC-Tenacious、AAC-Brandon、CDC-Landmark、CDC-Stanley 和 CDC-Teal)对同两种禾谷镰刀菌分离物的抗性,包括单独接种和联合接种。本研究的结果将有助于改善谷物加工、生产、质量和安全,从而造福整个谷物价值链。
昆虫害虫、疾病和杂草相互关联,相辅相成。单独来看,每一种都会造成相当大的损失,但如果忽视其中一种,就会导致另一种的侵袭。一些昆虫会分泌一种糖类物质,真菌会在上面生长。杂草是锈病和其他真菌的替代宿主,也是害虫的藏身之所。因此,为了有效地管理昆虫害虫和疾病,还必须管理杂草。定期清除杂草是一种预防性控制,因为它可以最大限度地减少养分竞争,防止冬眠害虫,并促进适当的通风和农药的使用。昆虫害虫、疾病和杂草管理成功的关键在于及早和完美地发现疾病并进行管理。根除和处理田间的接种源是重要的预防措施。通过保持土壤肥力、排水和通风来增强作物,控制土壤感染,并提高作物对害虫攻击的抵抗力。农作物的感染可能是土壤传播的、空气传播的或种子传播的。同样,一些害虫会吸食农作物的细胞汁液,一些会咀嚼叶子和花朵部分,一些会钻入茎、芽和果实,而有些昆虫的幼虫会钻进叶子,有时甚至钻进茎。这些问题和感染都需要采取特定的预防和控制方法。对于
摘要 菊花是全球销量最高的四种切花之一。基因编辑是研究基因功能的重要工具,但目前尚无高效、精准的菊花基因组编辑工具。本研究建立了CRISPR/Cas9介导的基因编辑系统,以探索基因功能并提高菊花育种水平。我们利用Golden Gate Assembly系统构建了CRISPR/Cas9载体,用于双靶向Phytoene Dehydro(PDS)基因。为了测试sgRNA设计的准确性,我们最初使用了植物中的瞬时CRISPR/Cas9编辑(TCEP)方法。经瞬时转染的9株植物中靶基因表达量为正常水平的19.1%–52%,证实了靶基因敲除的可行性。我们进行了稳定转化;PCR 和靶位测序表明,获得的八株白化植物中有四株在靶位点进行了稳定编辑。我们通过靶向另一个基因 CmTGA1 进一步评估了该系统的编辑效率,之所以选择该基因,是因为它在菊花白锈病 (CWR) 疾病进展中具有潜在重要性。我们的数据表明,结合瞬时和稳定转化可提高基因组定点编辑的效率和成功率。我们在此建立的有效、可遗传的 CRISPR/Cas9 介导的基因组编辑系统为 C 的功能基因研究和遗传改良奠定了基础。菊花。
摘要:使用抗性品种是控制由真菌 Hemileia vastatrix 引起的咖啡叶锈病的最有效策略。为了协助开发此类品种,与咖啡抗性小种 I 和 II 以及 H. vastatrix 的致病型 001 的两个基因座相关的扩增片段长度多态性 (AFLP) 标记被转换为序列特征扩增区 (SCAR) 和切割扩增多态性位点 (CAPS) 标记。总共在抗性和易感亲本以及来自 F 2 群体的 247 个个体中验证了 2 个 SCAR 标记和 1 个 CAPS 标记。在使用开发的标记进行基因分型并使用 H. vastatrix 小种 II 进行表型分析的 F 2:3 和回交 (BCrs 2 ) 群体中评估了这些标记对标记辅助选择 (MAS) 的效率。这些标记在 MAS 中显示出 90% 的效率。因此,开发的标记与与其他抗锈病基因相关的分子标记一起用于 F 3:4 和 BCrs 3 咖啡选择。使用与咖啡浆果病 (CBD) 抗性相关的两个标记分析选定的植物,旨在进行预防性育种。具有所有抗性位点的 F 3:4 和 BCrs 3 个体的 MAS 是可行的。我们的表型和基因型方法可用于开发具有多种基因的咖啡基因型,这些基因赋予咖啡叶锈病和 CBD 抗性。
蚕豆是一种冷季豆科作物,世界各地都种植它作为食物和饲料。尽管过去蚕豆的种植面积有所减少,但由于其高种子蛋白含量和出色的生态服务功能,全球对种植蚕豆的兴趣正在增加。然而,这种作物受到各种生物和非生物胁迫,导致粮食产量不稳定、低产。虽然已经确定了对主要疾病的抗源,例如蚕豆壳针病 ( Ascochyta fabae Speg.)、锈病 ( Uromyces viciae-fabae (Pers.) Schroet.)、巧克力斑病 ( Botrytis fabae Sard.) 和瘿病 ( Physioderma viciae ),但它们的抗性只是部分的,如果没有农艺措施,就无法防止粮食产量损失。需要与宿主植物抗性基因紧密相关的 DNA 标记来增强抗性水平。在非生物胁迫方面取得的进展较少。提出了不同的育种方法,但迄今为止,基于谱系法的品系育种仍是育种计划中的主流做法。尽管如此,种子繁殖系数低、需要在防虫围栏下生长以避免杂交,以及缺乏双单倍体系统和细胞质雄性不育等工具,都阻碍了育种。这降低了育种群体的大小和育种速度,从而降低了捕获有利等位基因的稀有组合的机会。在育种计划中,蚕豆-蚕豆 (vc −) 和除草剂耐受性等 DNA 标记的可用性和使用鼓舞了育种者,并增强了对标记辅助选择的信心。与几种生物和非生物胁迫耐受性密切相关的 QTL 是可用的,它们在育种者友好平台上的验证和转换将增强选择过程。最近,基因组选择和快速育种技术以及基因组学已经触手可及,可以加速蚕豆的遗传增益。基因组资源与其他育种工具、方法和平台的进步将有助于加速育种过程,从而提高该物种的遗传增益。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系