传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
今年,我们庆祝 Gerald T. Moore [1] 发表开创性论文 50 周年。这项工作让我们首次了解到一个令人费解的量子场现象——它预测当我们改变空电磁腔的边界条件(例如移动其中一个镜子)时会发生什么。从经典角度来看,什么都不应该发生——从某种意义上说,我们作用于一个不存在的物体。在量子物理学中,有一个时间-能量不确定性关系 ∆E∆t ≥ ℏ /2,这表明如果我们考虑小的时间间隔 ∆t,我们还需要考虑至少 ∆E ≥ ℏ /2∆t 的能量不确定性。因此,即使真空的能量为零,我们也需要考虑能量为 ∆E/2 的粒子及其反粒子自发出现,然后在时间 ∆t 内再次相互湮灭的可能性。我们无法从真空中提取这种所谓的零点能量,那么我们如何验证这种非常不平凡的虚无描述呢?1970 年,摩尔告诉我们,如果我们以足够快的速度移动镜子,我们就可以阻止湮灭,粒子就会被迫存在。这个过程被称为动态卡西米尔效应 (DCE)。能量来自镜子的运动,粒子通常成对产生。这种效应可以通过实验观察到吗?
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
关于“思想,镜子和神灵:在AI革命中解码我们的人性”的发人深省的演讲,探索了Vallor备受赞誉的2024年文本AI Mirror(牛津大学出版社)的主题。
摘要:本文设计了使用微控制器的带镜面助推器的太阳能跟踪系统。太阳能正迅速成为全世界的替代电源。为了有效利用太阳能,必须最大限度地提高其效率。最大化太阳能电池阵列功率输出的可行方法是跟踪太阳。本文介绍了使用步进电机、齿轮电机、光电二极管设计和构建太阳能跟踪系统。镜子用作助推器以最大限度地提高效率。整个框架将循环移动,镜子将从南向北移动,反之亦然。原型是围绕一个编程的微控制器考虑的,该微控制器通过基于太阳运动与传感器和电机驱动器通信来控制系统。实验分析了太阳能跟踪器的性能和特性。
,我们期待着温暖和热情好客的欢迎,我们在穆雷河上游的美丽城市中闻名,在温柔的山丘中,森林和果园中散布着迷人的旅馆,度假屋或柔和的别墅。曾经在交易员的会议地点的城市中心由以20世纪初期建筑风格建造的建筑物组成。从1907年以“分裂”风格建造的60米高的塔楼,可以从城市的任何地方看到。文化宫提供了色彩和建筑优雅的奇观,其屋顶是蓝色,白色和粉红色的屋顶,通过马赛克,浅层浮雕和壁画,邀请您进入带有Carrara Marble和Venetian镜子的气势大厅。从这里开始,您肯定会想进入音乐厅,美妙的“镜子大厅”和艺术博物馆。
通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。