本研究调查了一种纤维缠绕管模型,该模型结合了纤维缠绕过程中的纤维波动。使用线性范围内的有限元法分析了该模型,然后与壳模型和径向挤压实验进行了比较。结果表明,由于加入了纤维波动特征,实体模型预测径向压缩刚度的准确度高于壳模型。该模型是开发复合材料压力容器模型的第一步,在这种模型中纤维波动更为频繁,也用于预测故障起始和损伤扩展。2025 作者。由 Elsevier Ltd 代表制造工程师协会 (SME) 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
皮革制造过程涉及大量废物处理,会污染环境,有些过程是不可避免的。在目前的研究中,3D 打印技术被用于减少浪费并覆盖皮革中的缺陷区域。本研究重点是使用乳液聚合技术合成丙烯酸粘合剂。分析这些粘合剂的固体含量,以更好地优化用于整理操作的粘合剂量。实验粘合剂的固体含量为 26%。进行了粒度和热重分析,以了解颗粒的大小和形状及其耐热性。这些粘合剂用于皮革整理,并研究了皮革的性能。使用扫描电子显微镜 (SEM) 研究了皮革的表面形态变化。研究了干湿摩擦牢度、涂膜附着力、耐光性和感官性能,发现与对照皮革相比更胜一筹。采用具有轻微缺陷的丙烯酸整理皮革进行 3D 打印,并使用热塑性聚氨酯 (TPU) 作为长丝进行设计。丙烯酸涂层皮革对 TPU 具有良好的附着力,可在短时间内产生大量设计。使用 3D 打印技术将新添加剂添加到皮革中,以产生量身定制的有价值的设计,而不会产生任何浪费
摘要。探索了通过熔丝制造和烧结技术生产高碳钢/Inconel 718 双金属零件的可能性。分析了两种合金的兼容性,特别关注元素通过界面的相互扩散以及沉积策略的影响。研究了微观结构特征、相对密度和零件收缩。虽然最初的试验工艺参数值不足以达到可接受的材料致密化,但观察到 Inconel 718 和碳钢之间良好的结合,这表明有可能获得具有多种材料性能的完美双金属零件。由于致密化动力学的差异,烧结温度被发现是优化以最小化孔隙率的最关键工艺参数。关键词。增材制造、熔丝沉积、双金属材料、Inconel 718、高碳钢、微观结构、相互扩散、缺陷。
摘要 在增材制造技术中,熔丝制造 (FFF) 对于高性能应用越来越重要,例如在生物医学和制药领域,这些领域要求产品符合严格的功能和几何规格。在最先进的技术中,正在积极研究过程监控以改进 FFF:在制造过程中监控机器和零件可以保持质量的持续控制,允许提前终止流程或在发现问题时采取纠正措施。本文介绍了正在进行的“智能” FFF 机器实施研究,其中传感和机器学习相结合以实现实时过程监控和自我调节能力。通过传感器,智能 FFF 机器可以监控挤出速率、温度和压力。机器视觉可用于监控当前层的几何形状和形貌,检测出现的形貌缺陷和零件形状错误。数字孪生(即正在制造的部件和 FFF 系统的计算机模拟)的存在发挥着重要作用,机器 AI 可将其用作决策过程的辅助手段,并通过传感器数据不断更新以反映当前的制造状态。通过这些数字孪生,可以突出开发智能 FFF 机器的当前机遇和挑战