目录 1. 简介 ................................................................................................................ 3 2. 聚合物的 AM 技术 .............................................................................................. 5 2.1. 槽式光聚合 .............................................................................................. 5 2.2. 材料喷射 ............................................................................................................ 8 2.3. 粉末床熔融 ................................................................................................ 10 2.4. 材料挤出 ...................................................................................................... 12 2.5. 粘合剂喷射 ...................................................................................................... 14 2.6. 片材层压 ...................................................................................................... 15 2.7. 总结 ............................................................................................................. 15 3. 感光树脂 ............................................................................................................. 18 3.1. 材料要求 ............................................................................................................. 20 3.2. 3.2. 纯光敏树脂 ................................................................................................ 24 3.2.1. 生物相容性聚合物 .............................................................................. 24 3.2.2. 形状记忆聚合物 .............................................................................. 29 3.2.3. 数字多材料 ...................................................................................... 32 3.3. 光敏复合树脂 ...................................................................................... 35 3.3.1. 生物活性填料 ...................................................................................... 37 3.3.2. 其他功能填料 ...................................................................................... 38 3.3.3. 光聚合陶瓷悬浮液 ............................................................................. 40 4. 热塑性粉末 ............................................................................................. 44 4.1. 材料要求 ............................................................................................. 45 4.2.纯聚合物粉末 ................................................................................................ 52 4.2.1. 无定形聚合物 ................................................................................ 56 4.2.2. 半结晶聚合物 ................................................................................ 58 4.2.3. 聚合物共混物 ................................................................................ 69 4.3. 聚合物复合粉末 ................................................................................ 71 4.3.1. 微填料 .................................................................... 75 4.3.2. 纳米填料.............................................................................................. 77 5. 热塑性长丝 .............................................................................................. 85 5.1. 材料要求 .............................................................................................. 85 5.2. 纯聚合物长丝 ...................................................................................... 89 5.3. 聚合物复合长丝 ...................................................................................... 94 5.3.1. 颗粒填料 ...................................................................................... 94 5.3.2. 纤维填料 ...................................................................................... 96 6. 粘性聚合物墨水 ............................................................................................. 101 6.1. 材料要求 ............................................................................................. 101 6.2. 水凝胶 ................................................................................................ 102 6.3.其他文献 ................................................................................................................ 106 7. 结论和未来展望 .............................................................................................. 108 致谢................................................................................................................... 114 参考文献................................................................................................................... 114 作者简介.................................................................................................................... 134................................................................... 102 6.3. 其他墨水 ...................................................................................................... 106 7. 结论和未来展望 .............................................................................................. 108 致谢 ...................................................................................................................... 114 参考文献 ...................................................................................................................... 114 作者简介 ...................................................................................................................... 134................................................................... 102 6.3. 其他墨水 ...................................................................................................... 106 7. 结论和未来展望 .............................................................................................. 108 致谢 ...................................................................................................................... 114 参考文献 ...................................................................................................................... 114 作者简介 ...................................................................................................................... 134
摘要。探索了通过熔丝制造和烧结技术生产高碳钢/Inconel 718 双金属零件的可能性。分析了两种合金的兼容性,特别关注元素通过界面的相互扩散以及沉积策略的影响。研究了微观结构特征、相对密度和零件收缩。虽然最初的试验工艺参数值不足以达到可接受的材料致密化,但观察到 Inconel 718 和碳钢之间良好的结合,这表明有可能获得具有多种材料性能的完美双金属零件。由于致密化动力学的差异,烧结温度被发现是优化以最小化孔隙率的最关键工艺参数。关键词。增材制造、熔丝沉积、双金属材料、Inconel 718、高碳钢、微观结构、相互扩散、缺陷。
在过去的 30 年里,增材制造 (AM) 或 3D 打印已成为许多工业和实践相关材料的著名制造技术。1–9 与传统的减材制造 (SM) 不同,AM 迅速普及,因为它能够从许多不同的起始材料创建更复杂的几何形状。10 立体光刻 (SLA)、选择性激光烧结 (SLS)、数字光处理 (DLP) 和熔融沉积成型 (FDM) 是一些广泛使用的 AM 技术。在这些方法中,FDM 可能是材料工程师和业余爱好者最常用的方法。FDM 涉及将熔融的长丝通过加热的喷嘴挤出到构建板上以形成部件,然后逐层构建直到完成最终的打印产品。虽然 FDM 是一种易于理解和采用的技术,但其主要缺陷在于成品打印件具有明显的各向异性。尽管这种特性的不均匀性通常会导致部件之间和部件之间的巨大差异,11 但仍然有许多商品聚合物长丝,包括丙烯腈丁二烯苯乙烯 (ABS)、聚乳酸 (PLA)、聚酰胺(例如尼龙)、聚碳酸酯 (PC)、热塑性聚氨酯 (TPU) 和聚对苯二甲酸乙二醇酯 (PET) 及其共聚物,都可以通过 FDM 以良好的尺寸保真度进行打印。
基于长丝挤压的金属增材制造为广泛使用的基于梁的增材制造提供了一种替代方案。从基于挤压的技术获得的微观结构与基于梁的增材制造获得的微观结构有很大不同,因为挤压技术采用了烧结工艺,而不是熔池的快速凝固。在本研究中,研究了通过长丝挤压制备的 316L 不锈钢的微观结构与脱脂和烧结条件的关系。采用与能量色散 X 射线映射相关的高速纳米压痕来表征微观结构。发现 1350 ◦ C 的高烧结温度、纯 H 2 气氛和 60 K/m 的冷却速度可产生最佳微观结构。由于加速致密化,可获得高密度,这是通过引入由于 𝛿 铁素体形成而产生的扩散路径实现的。同时,可以避免氧化物或𝜎 沉淀物等硬质相对机械性能产生不利影响。结果表明,可以通过分析纳米压痕映射的硬度和模量数据来量化孔隙率。所得值与光学和阿基米德浸没法测量值高度一致。与文献相比,3D 打印和烧结样品的拉伸试验显示出出色的延展性和强度。我们证明,316L 细丝的 3D 打印和在优化条件下烧结可产生与块体值相当的材料性能。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
3D 打印机是一种使用塑料长丝(熔化并挤压)来创建预先设计好的物体的设备。LaunchPad 的访客可以使用两台 Prusa MK3 3D 打印机中的一台来创建各种颜色的小型 3D 物体。目前还没有提供用于现有物品的扫描仪。我的意思是,如果有扫描仪,您可以扫描一个小物件,比如水瓶旋盖,3D 打印机就会复制这个瓶盖。你为什么需要另一个瓶盖?你可能不需要,但如果你有一个设备或玩具的塑料部件,大小与瓶盖差不多,你可以使用 3D 打印机复制这个部件。LaunchPad 中的 3D 打印机仅用于演示目的。有各种尺寸的 3D 打印机可用于许多不同的应用。我为我的鼓组购买了 3D 打印机生产的物品,这些物品制造商没有提供。空间站上配备了 3D 打印机,以防零件损坏。美国宇航局或 SpaceX 可以将扫描码从地球传输到空间站上的 3D 打印机,大约一天之内(取决于零件的大小),工作人员就能得到急需的替换零件。一些超大型 3D 打印机使用混凝土代替塑料长丝,建造房屋只需数周而不是数月。图书馆的 3D 打印机仅需预约即可使用。
SAE AMS-AM(增材制造)是 SAE 航空材料系统组的一个技术委员会,负责制定和维护航空材料和工艺规范以及其他 SAE 增材制造技术报告,包括前体材料、增材工艺、系统要求和后构建材料、预处理和后处理、无损检测和质量保证。他们专注于关键的增材制造工艺,例如激光和电子束粉末床熔合,但也扩展到更大的构建范围工艺,例如等离子、激光和电子束直接能量沉积。其他相关的增材制造工艺包括用于聚合物的熔融长丝制造和用于金属和非金属应用的粘合剂喷射。
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
摘要 发射载荷是有效载荷的关键力。许多结构并非为承受这些载荷而设计的,因此需要额外的系统来吸收这些载荷。这些发射锁定机制有多种类型。对于未来的磁轴承反作用轮,开发并测试了两种不同原理的发射锁定机制概念。第一种基于弹簧机构,而第二种使用电磁来移动锁定销。对两者的原型进行了首次测试以评估其功能性。随后,在设计中加入了关于减轻质量和结构体积的改进。在此过程中,使用 PLA 长丝的增材制造已用于研究这些机制的可能应用。弹簧概念比电磁概念更可靠,但需要阻尼机制。使用增材制造的 PLA 组件是生产的一种有希望的可能性。