民主国家成功运作的组成部分,尤其是公民对公共机构和彼此的信任。随着Genai的民主化,由有说服力和个性化的机器生成[5]文本和合成媒体提供支持的虚假信息可以侵蚀这一信任。尽管强大而稳定的民主国家可能会将这一挑战与丰富的媒体生态系统3斗争,但新兴和脆弱的民主国家没有那么奢侈。这些国家经常缺乏强大的机构(例如,事实检查和网络安全智能单位),国防技术(例如,检测AI模型和技术基础设施)以及资源(例如,财务和人类专业知识)有效地抵消了虚假叙述所必需的。虚假信息通过较少突出的渠道和多种语言迅速循环。恶意行为者通过针对特定的语言,文化或社会群体来利用现有的社会分裂和脆弱性。这种有针对性的方法使当局在获得牵引力之前很难识别和揭穿虚假主张。本质上,Genai的出现使人们对真理的寻找更具挑战性甚至难以捉摸,尤其是在最需要真理和透明度的地区。
1。该指南近端部分的开槽区域有助于引用大转子的近端尖端。这是一个很好的地标,通常与股骨头的旋转中心一致。将圆锥体大小及其相应的雕刻线与转子的尖端保持一致。导向的内侧伸展上的缺口与著名直径的头部中心相对应。2。倾斜的表面提供了一个用于标记切割水平的平面,也可以用作锯刀片的切割表面。颈部切除是在下部角度表面进行的。3。导向的长尾巴用于与股轴轴对齐。它被设计为插入股骨后侧的软组织下。
今天,全球自动驾驶汽车(AVS)在现实世界中正在进行广泛的道路测试,有些人已经进行了积极的服务。然而,由于实际驾驶事件的“长尾巴”,4级以上的自主驾驶仍然是一个重要的挑战,这意味着在很少发生安全的情况下,AVS可能是不安全的(Jain等,2021)。在AV应用程序堆栈中,运动计划模块是解决此瓶颈的关键之一,因为它决定了AV的驾驶政策。通过从专家演示的大规模驾驶数据集中学习,模仿学习(IL)已被利用为现实世界交通情况的核心计划者,例如未签名的乡村道路(Pomerleau,1989),公路(Bojarski et al。,2016),以及2020 Al。
摘要 - 人类在循环(HITL)框架上是许多现实世界中的计算机视觉系统的特征,使人类操作员能够在AI帮助的情况下做出明智的决定。共形预测(CP)为标签集提供了严格的基于地面真相包容概率的保证,最近已成为HITL设置中有价值的工具。一个关键的应用领域是视频监视,与人类行动识别(HAR)紧密相关。这项研究探讨了CP在使用广泛预先训练的视觉模型(VLMS)的最先进的方法上的应用。我们的发现表明,CP可以显着减少候选类别的平均数量,而无需修改基础VLM。但是,这些减少通常会导致长尾巴的分布。为了解决这个问题,我们引入了一种基于调整VLM的温度参数以最小化这些尾巴的方法而无需其他校准数据的方法。我们的代码可在github上通过地址https://github.com/tbary/cp4vlm提供。索引项 - 符合预测,温度调整,视觉语言模型,人类行动识别。
摘要。寻求完全自动驾驶汽车(AV),能够以人类的理解和响应能力来浏览复杂的现实情况。在本文中,我们介绍了海豚,这是一种新颖的视觉语言模型,以吸收人类的能力,成为一名自治驾驶助手。海豚擅长处理包括视频(或图像)数据,文本指令和历史控制信号的多模式输入,以生成与提供指令相对应的知情输出。在开源的视觉模型(OpenFlamingo)构建基础上,我们首先通过一般领域中创新的基础思维链(GCOT)过程来增强海豚的推理能力。然后,我们通过构建特定的指令数据并进行指导调整来将海豚定制到驾驶领域。通过BDD-X数据集的利用,我们将四个不同的AV任务设计为海豚,以促进对复杂驾驶场景的整体理解。因此,海豚的独特特征被描述为两个维度:(1)能够对复杂且长尾巴的开放世界驾驶场景和解决AV任务的范围进行全面理解,以及(2)通过反置式学习和错误恢复,包括无梯度的即时概述。该匿名演示可在https://vlm-driver.github.io/上获得。
抽象人工智能(AI)辅助疾病预测由于其支持临床决策的能力而获得了广泛的研究兴趣。现有作品主要将疾病预测作为多标签分类问题,并使用历史电子病历(EMR)来培训监督模型。然而,在现实世界中,这种纯粹的数据驱动方法提出了两个主要挑战:1)长尾巴问题:常见疾病的EMR过多,并且对于罕见疾病的EMR不足,因此对不平衡的数据集进行培训可能会导致在诊断中忽略偏见模型的偏见模型; 2)很容易误诊疾病:某些疾病很容易区分,而另一些疾病则更加困难。一般分类模型而不强调容易诊断的疾病可能会产生错误的预测。为了解决这两个问题,我们在本文中提出了一种医学知识增强的对比学习方法(MKECL)方法。MKECL将医学知识图和医学许可考试纳入建模中,以弥补有关稀有疾病的足够信息;为了处理难以诊断的疾病,MKECL引入了一种对比度学习策略,以分离容易被误诊的疾病。此外,我们建立了一个名为Jarvis-D的新基准,其中包含从各种医院收集的临床EMR。对实际临床EMR的实验表明,拟议的MKECL优于现有的疾病预测方法,尤其是在几乎没有射击和零拍的情况下。
微生物组革命移动了微生物学家的守门柱。几个世纪以来,微生物学一直在理解相对少量的微生物上。这些模型物种是因为它们对健康,环境,工业的重要性,或仅仅是因为该物种易于使用。微生物学家在整个分子,遗传和基因组旋转中保持了关注,但是宏基因组革命使得不可能忽略我们世界各个方面发现的成千上万种研究的物种(DeWhirst等人。2010; Quast等。2013; Parks等。2018)。微生物组的科学崛起令人兴奋,但它给微生物学带来了巨大的实践挑战。如果只花了几个世纪的时间才能学习几种模型物种的细节,我们如何才能理解成千上万的新发现物种?为了说明研究研究的数据的匮乏,我们进行了文献计量分析,以提出微生物学研究的不均匀分布。GTDB数据库的版本202(Parks等人2022)包括43,409种独特的物种,我们计算了参考标题或摘要中每个物种的PubMed文章数量。结果严重偏斜。几乎74%的已知物种从来都不是科学出版物的主题 - 这些是未研究的细菌(图1A)。即使在研究的物种中(至少有一个出版物),所有文章中的50%仅指十种物种(图1b)。因此,我们的知识密度(我们每个物种所学的数量)实际上正在减少。所有细菌学文章中有90%以上研究的物种的研究不足1%,从而产生了细小的微生物的“长尾巴”。科学企业正在扩大,每年科学家发表的论文比久违的年份(国家科学基金会和国家科学委员会2021年)多4-5%。很容易想到,科学产量的增加将克服微生物的长尾巴,也就是说,科学家最终将四处研究每个物种。不幸的是,每年发现的物种数量超过了科学产出的增加(图1C)。在1990 - 2020年之间,每个研究的细菌种类发表的论文数量降低了60%(图1D)。当我们的很多理解来自少量的小动物时,我们对细菌多样性的看法就会有偏见。微生物学家杰弗里·格拉尼克(Jeffery Gralnick)曾经打趣说:“大肠杆菌是大肠杆菌的伟大模型生物。”格拉尼克(Gralnick)的评论提到在Shewanella Oneidensis的TCA周期中发现异常(相对于大肠杆菌)(Brutinel and Gralnick 2012)。尽管Oneidensis链球菌的引用减少了201倍,但可以说不是一个研究的物种。我们的分析将其排名为研究最多的细菌,在所有物种中排名前2.17%。即使是格拉尼克上述论文的简介也将S. oneidensis表示为“模型环境有机体”。如果在微生物2%之外发现了S. Oneidensis的TCA周期等差异,请想象其他98%的微生物中的多样性。微生物学家如何赶上爆炸的生命树?我们提出了两个宏伟的挑战,以培训一代可以解决微生物世界多样性的微生物学家。首先,我们需要采用多因素实验设计。一次进行一次研究的物种,菌株,基因,环境,压力源和表型。统计学家已经教导了数十年来,最有效,最强大的实验设计同时改变了多个因素,然后对效果进行解析
道路运输网络是世界上受伤和死亡的主要原因之一。与航空或铁路相比,道路运输的危险性更高,因为它持续依赖人类驾驶员以及经常发生不安全,复杂的情况场景。在过去的十年中,有一个重要的努力将车辆自动化引入道路运输以应对这些挑战。通过更换人类驾驶员,车辆自动化有可能彻底改变道路运输网络的安全性和效率。但是,在近年来,我们看到这种转变的进步速度较慢。我们将这种速度归因于车辆自动化的持续斗争,以处理出意外的处理问题的长尾巴,通常是由于遮挡,传感器不确定性甚至系统故障而引起的。解决意外的问题问题的一种方法是集成远程人类操作员,他们监视,协助以及在需要时控制车辆。尽管车辆自动化的关键目标是将人类带出 - 在循环中,但这些偏远的人类操作员构成了弹性层,有助于填补自动化差距,并减轻整个车辆操作中的故障。但是,通过集成远程人类运营商,我们冒着将新的人类错误引入道路运输网络的风险。在本文中,我们试图通过设计一个新的控制框架来应对这一挑战,该框架将远程人类操作员明确,安全地集成到了连接的车辆的工程和自动化中。我们的核心方式是密切检查远程人类操作员在监督连接车辆并将传统控制权调整为这些角色时扮演的角色。为此,我们详细介绍了一种结合形式方法和可及性分析以实现在线验证的新方法。我们表明,我们可以使用基于混合的逻辑树或基于汉密尔顿 - 雅各布(Hamilton-Jacobi)的可及性分析来协调一个称为时间逻辑树的计算结构,来验证操作员设计的规格。通过它们的模块化,时间逻辑树可确保当更改连接的车辆的规范时,可以实时更新验证结果。此外,我们表明,当使用汉密尔顿 - 雅各比(Hamilton-Jacobi)可达性分析构建时间逻辑树时,我们能够有效地合成符合特定符合特定的控制组的控制集,该控制集包含控制输入的控制输入,以确保其满足其要求。使用合成的控制集,我们设计了一个共享的自主系统,该系统允许远程操作可以在自动化不足的情况下安全地控制连接的车辆。通过利用这种方法,我们开发了一个框架,该框架允许远程人类操作员更改连接的车辆的驾驶规范,使车辆自动化以完成更新的规范,甚至在车辆的操作中进行干预,所有这些都可以保证车辆符合特定的特定方式。我们验证了使用5G蜂窝网络启用的小型连接的车辆测试台上开发框架的技术可行性和收益。
文件名描述dsgnwhsh_whoosh dark-abyss breeze_b00m_mawds.wav airy,未来派的woosh woosh with gun shot型共振。dsgnwhsh_whoosh dark-casper_b00m_mawds.wav动态,电子驱动器,带有数字混响。dsgnwhsh_whoosh深色curs_b00m_mawds.wav激光型切片声和法兰共振咳嗽。dsgnwhsh_whoosh dark-evil East_b00m_mawds.wav密集,和谐复杂的合成器以缓慢的攻击和缓慢释放命中。dsgnwhsh_whoosh dark-imposter_b00m_mawds.wav电子风,带有长尾巴和数字文物的数字风。dsgnwhsh_whoosh dark-whizz_b00m_mawds。dsgnwhsh_whoosh dark-little Nightmares_b00m_mawds.wav动态woosh,带有渐变动力学和数字尾巴。dsgnwhsh_whoosh dark-malfoy_b00m_mawds.wav尖锐,清洁过渡效果,带有毛刺伪影和噪音尾巴。dsgnwhsh_whoosh dark-unholy_b00m_mawds.wav密度,机械,复杂的Woosh,具有高科技数字零件。dsgnwhsh_whoosh dark-void seeker_b00m_mawds.wav airy uny insing ins and ins the-wav and ins in trundistist and tunly offentist and tuneristist。dsgnwhsh_whoosh light-charmed_b00m_mawds.wav高频,金属woosh带有有需要的in Harmonic共振。dsgnwhsh_whoosh light-esoterico_b00m_mawds.wav电子,HUD响起woosh woosh and Chorus and langing。dsgnwhsh_whoosh浅色dust_b00m_mawds.wav外星人,未来派的woosh,带有高螺距闪光和中范围的拳头。dsgnwhsh_whoosh light-healing grace_b00m_mawds.wav高高倾斜,通风的woosh声音,带有闪闪发光的共鸣。dsgnwhsh_whoosh light-irari_b00m_mawds.wav快速,数字冲击声,带有渐变攻击和闪闪发光的尾巴。dsgnwhsh_whoosh灯光lance_b00m_mawds.wav电磁woosh带有数字小故障工件。dsgnwhsh_whoosh light-mystisweep_b00m_mawds.wav sci-fi woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh。dsgnwhsh_whoosh light-serenity_b00m_mawds.wav反针效应,然后是数字冲击声。dsgnwhsh_whoosh light-sprite_b00m_mawds.wav立体声基于毛孔,带有小故障,不断发展的音色。dsgnwhsh_whoosh light-twilight_b00m_mawds.wav卷曲,高通滤波的woosh和远处的混响尾巴。dsgnwhsh_whoosh中性 - 抗原dsgnwhsh_whoosh中性 - 弧形gust_b00m_mawds.wav枪射击类型的冲击,带有法兰,回响的尾巴。dsgnwhsh_whoosh中性boomerang_b00m_mawds.wav通过数字卷积以电子增强的woosh。dsgnwhsh_whoosh中性bolt_b00m_mawds.wav高高的woosh,带有颗粒状伪像和金属冲动。dsgnwhsh_whoosh中性consumed_b00m_mawds.wav反向电子噪声,快速释放和光谱形状。dsgnwhsh_whoosh中性fast_b00m_mawds.wav频谱woosh带有颗粒状螺距转移和相位的共振。dsgnwhsh_whoosh中性的力量_b00m_mawds.wav紧缩,爆炸性过渡,卷积和空气。dsgnwhsh_whoosh中性obsidian sway_b00m_mawds.wav vocoder处理的woosh woosh具有共振剂过滤和外星品质。dsgnwhsh_whoosh中性 - 搜索器_b00m_mawds.wav白噪声过渡,数字,人工调制尾巴。dsgnwhsh_whoosh中性snitch_b00m_mawds.wav高螺距,颤抖的HUD型Woosh带有光谱形状。dsgnwhsh_whoosh中性 - 造型zephyr_b00m_mawds.wav光谱合成类型过渡性声音,具有数字脉冲响应。magevil_bed dark-Energy提取_b00m_mawds.WAV持续,数字湍流,用颗粒状云。magevil_bed dark-sinister aura_b00m_mawds.wav常数,不断发展,数字垫,具有inharmonic共振和光谱变形。